

 [image: SBT Native Packager Logo]
The sbt-native-packager attempts to make building packages for different operating systems easier. While it provides
some basic abstractions around packaging, it also allows you to dig down into the nuts and bolts of each platform as
needed to generate the best package possible.

“Code once, deploy anywhere”

Read the Introduction to learn how native-packager works. The Getting Started guide will help you set up
your first package. The Packaging Formats and Project Archetypes sections explain the different plugins in more
detail, while Recipes provide solutions for common configurations.

Sitemap

	Introduction
	Goals

	Scope

	Core Concepts

	Getting Started
	Setup

	Your first package

	Formats
	Universal Plugin

	Linux Plugin

	Debian Plugin

	Rpm Plugin

	Docker Plugin

	Windows Plugin

	JDKPackager Plugin

	GraalVM Native Image Plugin

	Archetypes
	Java Command Line Application

	Java Server Application

	Systemloaders

	Configuration Archetypes

	Jlink Plugin

	An archetype cheatsheet

	Recipes
	Custom Package Formats

	Dealing with long classpaths

	Play 2 Packaging

	Deployment

	Scala JS packaging

	Build the same package with different configs

	Embedding JVM in Universal

	Setting the umask for your process

Introduction

SBT native packager lets you build application packages in native formats and offers different archetypes for common
configurations, such as simple Java apps or server applications.

This section provides a general overview of native packager and its core concepts. If you want a quick start, go to the
getting started section. However we recommend understanding the core concepts, which will help
you to get started even quicker.

Goals

Native packager defines project goals in order to set expectations and scope for this project.

	
	Native formats should build on their respective platform

	This allows native packager to support a wide range of formats as the packaging plugin serves as a wrapper around
the actual packaging tool. However, alternative packaging plugins maybe provided if a java/scala implementation
exists. As an example debian packages should always build on debian systems, however native packager provides
an additional plugin that integrates JDeb for a platform independent packaging strategy.

	
	Provide archetypes for zero configuration builds

	While packaging plugins provide the how a package is created, archetypes provide the configuration for what gets
packaged. Archetypes configure your build to create a package for a certain purpose. While an archetype may not
support all packaging formats, it should work without configuration for the supported formats.

	
	Enforce best-practices

	There is no single way to create a package. Native packager tries to create packages following best practices,
e.g. for file names, installation paths or script layouts.

Scope

While native packager provides a wide range of formats and archetype configurations, its scope is relatively narrow.
Native packager only takes care of packaging, the act of putting a list of mappings (source file to install target
path) into a distinct package format (zip, rpm, etc.).

Archetypes like Java Application Archetype or Java Server Application Archetype only add additional files to the mappings
enriching the created package, but they don’t provide any new features for native-packager core functionality. Much like
the packaging format plugins, the archetypes rely on functionality already available on your
deploy target.

These things are out of native packagers scope

	
	Providing application lifecyle management.

	The Java Server Application Archetype provides configurations for common system-loaders like SystemV, Upstart or SystemD.
However creating a custom solution which includes stop scripts, PID management, etc. are not part of native
packager.

	
	Providing deployment configurations

	Native packager produces artifacts with the packageBin task. What you do with these is part of another step in
your process.

Core Concepts

Native packager is based on a few simple concepts. If you understand these, you will be able to customize your build,
create own packaging formats and deploy more effectively.

	Separation of concerns with two kinds of plugins

	format plugins define how a package is created

	archetype plugins define what a package should contain

	Mappings define how your build files should be organized on the target system.

Mappings are a Seq[(File, String)], which translates to “a list of tuples, where each tuple defines a source file that gets mapped to a path on the target system”.

The following sections describe these concepts in more detail.

Format Plugins

Format plugins provide the implementation to create package, the how a package is created. For example the
Debian Plugin provides a way to package debian packages. Each format plugin has its
own documentation. Each plugin provides a common set of features:

	
	Provide a new configuration scope

	Formats define their own configuration scope to be able to customize every shared setting or task.

	
	Provide package format related settings and tasks

	Each format plugin may add additional settings or tasks that are only used by this plugin. Normally these settings
start with the plugin name, e.g. rpmXYZ.

	
	Implement package task

	packageBin or publishLocal tasks provide the actual action to create a package.

By enabling a format plugin only with

enablePlugins(SomePackageFormatPlugin)

the resulting package will be empty because a format plugin doesn’t provide any configuration other than the default settings
for the format plugin’s specific settings.

Archetype Plugins

While format plugins provide the how, archetypes provide the what gets packaged. An archetype changes the configuration in all supported package format scopes; they don’t add configuration
scopes.

A full list of archetypes can be found
here.

	An archetype may provide the following:

	
	Archetype related settings and tasks

	New files in your package

By enabling an archetype plugin with

enablePlugins(SomeArchetypePlugin)

all configuration changes will be applied as well as all supported format plugins will be enabled.

Tip

An archetype plugin should be the starting point for creating packages!

Mappings

Mappings are the heart of native packager. This task defines what files in your build should be mapped where on the
target system. The type signature for the mappings task is

mappings: TaskKey[Seq[(File, String)]]

The file part of the tuple must be available during the packaging phase. The String part represents the path inside
the installation directory.

The Universal Plugin represents the base for all other plugins. It has a big section on how to customize
mappings.

Architecture

The architecture can be summarized with this diagram

[image: Architecture diagram.]When using the full power of the plugin, all of the packaging is driven from the mappings in Universal setting,
which defines what files will be included in the package. These files are automatically moved around for the appropriate
native packaging as needed.

Getting Started

Setup

Sbt-native-packager is an AutoPlugin. Add it to your plugins.sbt

addSbtPlugin("com.typesafe.sbt" % "sbt-native-packager" % "x.y.z")

Native Tools

Depending on the package format you want to create, you may need additional tools available on your machine.
Each packaging format has a requirements section.

Your first package

Native packager provides packaging format plugins and archetype plugins to separate
configuration and actual packaging. To get started we use the basic Java Application Archetype.
For more archetypes see the archetypes page.

In your build.sbt you need to enable the archetype like this

enablePlugins(JavaAppPackaging)

This will also enable all supported format plugins.

Run the app

Native packager can stage your app so you can run it locally without having the app packaged.

sbt stage
./target/universal/stage/bin/<your-app>

Create a package

We can generate other packages via the following tasks. Note that each packaging format may needs some additional
configuration and native tools available. Here’s a complete list of current formats.

	universal:packageBin - Generates a universal zip file

	universal:packageZipTarball - Generates a universal tgz file

	debian:packageBin - Generates a deb

	docker:publishLocal - Builds a Docker image using the local Docker server

	rpm:packageBin - Generates an rpm

	universal:packageOsxDmg - Generates a DMG file with the same contents as the universal zip/tgz.

	windows:packageBin - Generates an MSI

Packaging Formats

There is a plugin for each packaging format that native-packager supports. These plugins can rely on each other to reuse
existing functionality. Currently the autoplugin hierarchy looks like this

 SbtNativePackager
 +
 |
 |
 +-------+ Universal +--------+-------------+----------------+
+			
 + + + + +
Docker +-+ Linux +-+ Windows JDKPackager GraalVM native-image
 | |
 | |
 + +
 Debian RPM

If you enable the DebianPlugin all plugins that depend on the DebianPlugin will be enabled as well (LinuxPlugin, UniversalPlugin
and SbtNativePackager).

Each packaging format defines its own scope for settings and tasks, so you can customize
your build on a packaging level. The settings and tasks must be explicitly inherited. For the mappings task this
looks like this

mappings in Docker := (mappings in Universal).value

To learn more about a specific plugin, read the appropriate doc.

Tip

You may also need to read the docs of the dependent plugins. We recommend always that you read the
Universal Plugin documentation because all plugins rely on this one.

	Universal Plugin

	Linux Plugin

	Debian Plugin

	Rpm Plugin

	Docker Plugin

	Windows Plugin

	JDKPackager Plugin

	GraalVM Native Image Plugin

Universal Plugin

The Universal Plugin creates a generic, or “universal” distribution package. This is called “universal packaging.” Universal packaging just takes a plain mappings configuration and generates various
package files in the output format specified. Because it creates a distribution
that is not tied to any particular platform it may require manual labor (more work from your users) to correctly install and set up.

Related Plugins

	Linux Plugin

	Docker Plugin

	Windows Plugin

Requirements

Depending on what output format you want to use, you need one of the following applications installed

	zip (if native)

	gzip

	xz

	tar

	hdiutil (for dmg)

Build

There is a task for each output format

Zip

sbt universal:packageBin

Tar

sbt universal:packageZipTarball

Xz

sbt universal:packageXzTarball

Dmg

sbt universal:packageOsxDmg

Required Settings

The Universal Plugin has no mandatory fields.

Enable the universal plugin

enablePlugins(UniversalPlugin)

Configurations

Settings and Tasks inherited from parent plugins can be scoped with Universal.

Universal packaging provides three Configurations:

	universal

	For creating full distributions

	universal-docs

	For creating bundles of documentation

	universal-src

	For creating bundles of source.

Here is how the values for name and packageName are used by the three configurations:

name in Universal := name.value

name in UniversalDocs := (name in Universal).value

name in UniversalSrc := (name in Universal).value

packageName in Universal := packageName.value

Settings

As we showed before, the universal packages are completely configured through the use of mappings. Simply
specify the desired mappings for a given configuration. For example:

mappings in Universal += (packageBin in Compile).value -> "lib/foo.jar"

However, sometimes it may be advantageous to customize the files for each archive separately. For example, perhaps
the .tar.gz has an additional README plaintext file in addition to a README.html. To add this just to the .tar.gz file,
use the task-scope feature of sbt:

mappings in Universal in packageZipTarball += file("README") -> "README"

Besides mappings, the name, sourceDirectory and target configurations are all respected by universal packaging.

Note: The Universal plugin will make anything in a bin/ directory executable. This is to work around issues with JVM
and file system manipulations.

Tasks

	universal:package-bin

	Creates the zip universal package.

	universal:package-zip-tarball

	Creates the tgz universal package.

	universal:package-xz-tarball

	Creates the txz universal package. The xz command can get better compression
for some types of archives.

	universal:package-osx-dmg

	Creates the dmg universal package. This only work on macOS or systems with hdiutil.

	universal-docs:package-bin

	Creates the zip universal documentation package.

	universal-docs:package-zip-tarball

	Creates the tgz universal documentation package.

	universal-docs:package-xz-tarball

	Creates the txz universal documentation package. The xz command can get better compression
for some types of archives.

Customize

Universal Archive Options

You can customize the commandline options (if used) for the different zip formats.
If you want to force local for the tgz output add this line:

universalArchiveOptions in (Universal, packageZipTarball) := Seq("--force-local", "-pcvf")

This will set the cli options for the packageZipTarball task in the Universal plugin to use the options --force-local and pcvf.
Be aware that the above line will overwrite the default options. You may want to prepend your options, doing something like:

universalArchiveOptions in (Universal, packageZipTarball) :=
 (Seq("--exclude", "*~") ++ (universalArchiveOptions in (Universal, packageZipTarball)).value)

Currently, these task can be customized:

	universal:package-zip-tarball

	universalArchiveOptions in (Universal, packageZipTarball)

	universal:package-xz-tarball

	universalArchiveOptions in (Universal, packageXzTarball)

Getting Started with Universal Packaging

By default, all files found in the src/universal directory are included in the distribution. So, the first step
in creating a distribution is to place files in this directory and organize them as you’d like in them to be in the distributed package.
If your output format is a zip file, for example, although the distribution will consist of just one zip file, the files and directories within that zip file will reflect the same organization and structure as src/universal.

To add files generated by the build task to a distribution, simply add a mapping to the mappings in Universal setting. Let’s
look at an example where we add the packaged jar of a project to the lib folder of a distribution:

mappings in Universal += {
 val jar = (packageBin in Compile).value
 jar -> ("lib/" + jar.getName)
}

The above does two things:

	It depends on packageBin in Compile which will generate a jar file form the project.

	It creates a mapping (a Tuple2[File, String]) which denotes the file and the location in the distribution as a string.

You can use this pattern to add anything you desire to the package.

Note

If you are using an application archetype or the playframework, the jar mapping is already defined and
you should not include these in your build.sbt. issue 227 [https://github.com/sbt/sbt-native-packager/issues/227]

Universal Conventions

This plugin has a set of conventions for universal packages that enable the automatic generation of native packages. The
universal convention has the following package layout:

bin/
 <scripts and things you want on the path>
lib/
 <shared libraries>
conf/
 <configuration files that should be accessible using platform standard config locations.>
doc/
 <Documentation files that should be easily accessible. (index.html treated specially)>

If your plugin matches these conventions, you can enable the settings to automatically generate native layouts based on your universal package. To do
so, add the following to your build.sbt:

mapGenericFilesToLinux

mapGenericFilesToWinows

In Linux, this mapping creates symlinks from platform locations to the install location of the universal package. For example,
given the following packaging:

bin/
 cool-tool
lib/
 cool-tool.jar
conf/
 cool-tool.conf

The mapGenericFilesToLinux settings will create the following package (symlinks denoted with ->):

/usr/share/<pkg-name>/
 bin/
 cool-tool
 lib/
 cool-tool.jar
 conf/
 cool-tool.conf
/usr/bin/
 cool-tool -> /usr/share/<package-name>/bin/cool-tool
/etc/<pkg-name> -> /usr/share/<package-name>/conf

The mapGenericFilesToWindows will construct an MSI that installs the application in <Platform Program Files>\<Package Name> and include
the bin directory on Windows PATH environment variable (optionally disabled).

While these mappings provide a great start to nice packaging, it still
may be necessary to customize the native packaging for each platform. This can be done by configuring those settings directly.

For example, even using generic mapping, debian has a requirement for changelog files to be fully formed. Using the above generic mapping, we can configure just this
changelog in addition to the generic packaging by first defining a changelog in src/debian/changelog and then adding the following setting:

linuxPackageMappings in Debian +=
 (packageMapping(
 ((sourceDirectory in Debian).value / "changelog") -> "/usr/share/doc/sbt/changelog.gz"
) withUser "root" withGroup "root" withPerms "0644" gzipped) asDocs()

Notice how we’re only modifying the package mappings for Debian linux packages.

For more information on the
underlying packaging settings, see Windows Plugin and Linux Plugin documentation.

Change/Remove Top Level Directory in Output

Your output package (zip, tar, gz) by default contains a single folder
with your application. If you want to change this folder or remove this
top level directory completely use the topLevelDirectory setting.

Removing the top level directory

topLevelDirectory := None

Changing it to another value, e.g. the packageName without the version

topLevelDirectory := Some(packageName.value)

Or just a plain hardcoded string

topLevelDirectory := Some("awesome-app")

Skip packageDoc task on stage

The stage task forces a javadoc.jar build, which could slow down stage tasks performance. In order to deactivate
this behaviour, add this to your build.sbt

mappings in (Compile, packageDoc) := Seq()

Source issue 651 [https://github.com/sbt/sbt-native-packager/issues/651].

MappingsHelper

The MappingsHelper [http://www.scala-sbt.org/sbt-native-packager/latest/api/#com.typesafe.sbt.packager.MappingsHelper$] class provides a set of helper functions to make mapping directories easier.

sbt 0.13.5 and plugin 1.0.x or higher

import NativePackagerHelper._

plugin version 0.8.x or lower

import com.typesafe.sbt.SbtNativePackager._
import NativePackagerHelper._

You get a set of methods which will help you to create mappings very easily.

mappings in Universal ++= directory("src/main/resources/cache")

mappings in Universal ++= contentOf("src/main/resources/docs")

mappings in Universal ++= directory(sourceDirectory.value / "main" / "resources" / "cache")

mappings in Universal ++= contentOf(sourceDirectory.value / "main" / "resources" / "docs")

Mapping Examples

SBT provides the IO [http://www.scala-sbt.org/0.13.1/docs/Detailed-Topics/Paths.html] and Path [http://www.scala-sbt.org/0.13.1/docs/Detailed-Topics/Paths.html] APIs, which
help make defining custom mappings easy. The files will appear in the generate universal zip, but also in your
debian/rpm/msi/dmg builds as described above in the conventions.

The packageBin in Compile dependency is only needed if your files get generated
during the packageBin command or before. For static files you can remove it.

Mapping a complete directory

There are some helper methods so you can create a mapping for a complete directory:

For static content, you can just add the directory to the mapping:

mappings in Universal ++= directory("SomeDirectoryNameToInclude")

If you want to add everything in a directory where the path for the directory is dynamic, e.g. the scala-2.10/api directory that is nested under in the target directory, and target is defined in a task:

(mappings in Universal) ~= (_ ++ directory(target.value / "scala-2.10" / "api"))

You can also use the following approach if, for example, you need more flexibility:

(mappings in Universal) ++= {
 val dir = target.value / "scala-2.10" / "api"
 (dir ** AllPassFilter) pair relativeTo(dir.getParentFile)
}

Here is what happens in this code:

dir.*** is a PathFinder [http://www.scala-sbt.org/0.13.1/docs/Detailed-Topics/Paths.html#path-finders] method that creates a sequence of every file under a directory, including the directory itself.

relativeTo() returns a String that is the path relative to whatever you pass to it.

dir.getParentFile returns the parent of dir. In this example, it’s the parent directory of whatever target is.

pair is a PathFinder [http://www.scala-sbt.org/0.13.1/docs/Detailed-Topics/Paths.html#path-finders] method that takes a function and applies it to every file (in the sequence), and returns a (file, function-result) tuple.

Putting it all together, this creates a map of every file under target/scala-2.10/api (including the directory target/scala-2.10/api itself)
with a string that is the path to the parent of target. This is a mapping for every file and a string that tells the universal packager where it is located.

For example:

if target = /Users/you/dev/fantasticApp/src/scala/fantasticApp-0.1-HOTFIX01

and
fantasticApp-0.1-HOTFIX01/scala-2.10/api/ contains the files

somedata.csv
README

Then the code above will produce this mapping:

((/Users/you/dev/fantasticApp/src/scala/fantasticApp-0.1-HOTFIX01,fantasticApp-0.1-HOTFIX01),

(/Users/you/dev/fantasticApp/src/scala/fantasticApp-0.1-HOTFIX01/README,fantasticApp-0.1-HOTFIX01/README),

(//Users/you/dev/fantasticApp/src/scala/fantasticApp-0.1-HOTFIX01/somedata.csv,fantasticApp-0.1-HOTFIX01/somedata.csv))

Note that the first item of each pair is the full path to where the file exists on the system /Users/you....., and the
second part is the just the path starting after .../scala. That second part is what is returned from
<each file>.relativeTo(dir.getParentFile).

Mapping the content of a directory (excluding the directory itself)

mappings in Universal ++= {
 val dir = target.value / "scala-2.10" / "api"
 (dir ** AllPassFilter --- dir) pair relativeTo(dir)
}

The dir gets excluded and is used as root for relativeTo(dir).

Filter/Remove mappings

If you want to remove mappings, you have to filter [https://twitter.github.io/scala_school/collections.html#filter] the current list of mappings.
This example demonstrates how to build a fat jar with sbt-assembly, but using all
the convenience of the sbt native packager archetypes.

tl;dr how to remove stuff

// removes all jar mappings in universal and appends the fat jar
mappings in Universal := {
 // universalMappings: Seq[(File,String)]
 val universalMappings = (mappings in Universal).value
 val fatJar = (assembly in Compile).value

 // removing means filtering
 // notice the "!" - it means NOT, so only keep those that do NOT have a name ending with "jar"
 val filtered = universalMappings filter {
 case (file, name) => ! name.endsWith(".jar")
 }

 // add the fat jar to our sequence of things that we've filtered
 filtered :+ (fatJar -> ("lib/" + fatJar.getName))
}

The complete build.sbt should contain these settings if you want a single assembled fat jar.

// the assembly settings
assemblySettings

// we specify the name for our fat jar
jarName in assembly := "assembly-project.jar"

// using the java server for this application. java_application would be fine, too
packageArchetype.java_server

// removes all jar mappings in universal and appends the fat jar
mappings in Universal := {
 val universalMappings = (mappings in Universal).value
 val fatJar = (assembly in Compile).value
 val filtered = universalMappings filter {
 case (file, name) => ! name.endsWith(".jar")
 }
 filtered :+ (fatJar -> ("lib/" + fatJar.getName))
}

// the bash scripts classpath only needs the fat jar
scriptClasspath := Seq((jarName in assembly).value)

Linux Plugin

The native packager plugin is designed so that linux packages look similar but can contain distribution specific information.

Note

The linux plugin depends on the Universal Plugin.

Related Plugins

	Debian Plugin

	Rpm Plugin

Build

The linux plugin is just a top level plugin for linux packaging formats.
The Linux scope contains settings which can be used by the plugins
depending on the linux plugin.

sbt "show linux:linuxPackageMappings"

Required Settings

A linux package needs some mandatory settings to be valid. Make sure
you have these settings in your build:

name := "Linux Example"

version := "1.0"

maintainer := "Max Smith <max.smith@yourcompany.io>"

packageSummary := "Hello World Debian Package"

packageDescription := """A fun package description of our software,
 with multiple lines."""

Enable the linux plugin to activate the native package implementation.

enablePlugins(LinuxPlugin)

Configurations

Settings and tasks inherited from parent plugins can be scoped with Linux.

name in Linux := name.value

Settings

The required fields for any linux distribution are:

	name in Linux

	The name given the package for installation.

	maintainer

	The name of the maintainer of the package (important for ownership and signing).

	packageSummary

	A one-sentence short summary of what the package does.

	packageDescription

	A longer description of what the package does and what it includes.

	linuxPackageMappings

	A list of files and their desired installation locations for the package, as well as other metainformation.

	fileDescriptorLimit

	Maximum number of open file descriptors for the spawned application. The default value is 1024.

Customize

Package Mappings

Most of the work in generating a linux package is constructing package mappings. These ‘map’ a file to a location on disk where it should
reside as well as information about that file. Package mappings allow the specification of file ownership, permissions and whether or not
the file can be considered “configuration”.

Note that while the sbt-native-packager plugin allows you to specify all of this information, not all platforms will make use of the
information. It’s best to be specific about how you want files handled and run tests on each platform you wish to deploy to.

A package mapping takes this general form

(packageMapping(
 file -> "/usr/share/man/man1/sbt.1.gz"
) withPerms "0644" gzipped) asDocs()

Let’s look at each of the methods supported in the packageMapping ‘library’.

	packageMapping(mappings: (File, String)*)

	This method takes a variable number of File -> String pairs. The File should be a locally available file that can be bundled,
and the String is the installation location on disk for that file. This returns a new PackageMapping that supports the remaining methods.

	withPerms(mask: String)

	This function adjusts the installation permissions of the associated files. The flags passed should be of the form of a mask, e.g. 0755.

	gzipped

	This ensures that the files are written in compressed format to the destination. This is a convenience for distributions that want files zipped.

	asDocs

	This denotes that the mapped files are documentation files. Note: I believe these are only used for ``RPM``s.

	withConfig(value:String="true")

	This denotes whether or not a %config attribute is attached to the given files in the generated rpm SPEC. Any value other than "true" will be
placed inside the %config() definition. For example withConfig("noreplace") results in %config(noreplace) attribute in the rpm spec.

	withUser(user:String)

	This denotes which user should be the owner of the given files in the resulting package.

	withGroup(group:String)

	This denotes which group should be the owner of the given files in the resulting package.

The LinuxPackageMapping Models

All classes are located in the com.typesafe.sbt.packager.linux package. So if you want to create
instances yourself you have to add import com.typesafe.sbt.packager.linux._ to your build file.

A LinuxPackageMapping contains the following fields:

	mappings: Traversable[(File, String)]

	A list of mappings aggregated by this LinuxPackageMapping

	fileData: LinuxFileMetaData

	Permissions for all the defined mappings. Default = “root:root 755”

	zipped: Boolean

	Are the mappings zipped? Default = false

All mappings are stored in the task linuxPackageMappings which returns a Seq[LinuxPackageMapping]. To display the contents (value),
open the sbt console and call

show linuxPackageMappings

The LinuxFileMetaData has the following fields

	user: String

	The user owning all the mappings. Default = “root”

	group: String

	The group owning all the mappings. Default = “root”

	permissions: String

	Access permissions for all the mappings. Default = “755”

	config: String

	Are the mappings config files. Default = “false”

	docs: Boolean

	Are the mappings docs. Default = false

Last but not least there are the linuxPackageSymlinks, which encapsulate symlinks on your
destination system. A LinuxSymlink contains only two fields

	link: String

	The actual link that points to destination

	destination: String

	The link destination

You can see all currently configured symlinks with this simple command.
linuxPackageSymlinks is just a Seq[LinuxSymlink]

show linuxPackageSymlinks

Modifying Mappings in General

Adding, filtering and altering mappings are always simple methods on a Seq[LinuxPackageMapping] sequence.
This section shows you the general way to add, modify, or filter mappings. The following sections have specific examples.

The basic construct for adding a mapping is

// simple
linuxPackageMappings += packageMapping((theFile, "/absolute/path/somefile.txt"))

// specialized
linuxPackageMappings += packageMapping((theFile, "/absolute/path/somefile.txt")) withPerms("644") asDocs()

To filter or modify a mapping, you generally create a new mapping by copying an existing one (or occasionally by creating a new blank one),
then filter or modify it, and then return that filtered or modified mapping. Here’s an example that shows a number of things you can possibly do. See the next section for specifc examples.
(Basic scala collections operations are used in the code. Here is an explanation of the filter method [https://twitter.github.io/scala_school/collections.html#filter].)

// sbt 0.13.0 syntax
linuxPackageMappings := {
 // mappings: Seq[LinuxPackageMapping]
 val mappings = linuxPackageMappings.value

 // this process will must return another Seq[LinuxPackageMapping]
 mappings map { linuxPackage =>

 // each mapping element is a Seq[(java.io.File, String)]
 val filtered = linuxPackage.mappings map {
 case (file, name) => file -> name // alter stuff here
 } filter {
 case (file, name) => true // filter anything from the mapping where the case (file, name) => true pattern is satisfied
 }

 // Copy values from the mapping: (Include only what you need)
 val fileData = linuxPackage.fileData.copy(
 user = "new user",
 group = "another group",
 permissions = "444",
 config = "false",
 docs = false
)

 // returns a fresh LinuxPackageMapping based on the above
 linuxPackage.copy(
 mappings = filtered,
 fileData = fileData
)
 } filter {
 linuxPackage => linuxPackage.mappings.nonEmpty // return all mappings that are nonEmpty (this effectively removes all empty linuxPackageMappings)
 }
}

// sbt 0.12.x syntax
linuxPackageMappings <<= linuxPackageMappings map { mappings =>
 /* stuff. see above */
 mappings
}

The ordering in which you apply the tasks is important.

Add Mappings

To add an arbitrary file in your build path

linuxPackageMappings += {
 val file = sourceDirectory.value / "resources" / "somefile.txt"
 packageMapping((file, "/absolute/path/somefile.txt"))
}

linuxPackageMappings can be scoped to Rpm or Debian if you want to add mappings only for a single packaging type.

linuxPackageMappings in Debian += {
 val file = sourceDirectory.value / "resources" / "debian-somefile.txt"
 packageMapping((file, "/absolute/path/somefile.txt"))
}

linuxPackageMappings in Rpm += {
 val file = sourceDirectory.value / "resources" / "rpm-somefile.txt"
 packageMapping((file, "/absolute/path/somefile.txt"))
}

Filter/Remove Mappings

If you want to remove some mappings you have to filter the current list of linuxPackageMappings.
As linuxPackageMappings is a task, the order of your settings is important. Here are some examples
on how to filter mappings.

// this is equal to
// linuxPackageMappings <<= linuxPackageMappings map { mappings => /* stuff */ mappings }
linuxPackageMappings := {
 // first get the current mappings. mapping is of type Seq[LinuxPackageMapping]
 val mappings = linuxPackageMappings.value

 // map over the mappings if you want to change them
 mappings map { mapping =>

 // we remove everything besides files that end with ".conf"
 val filtered = mapping.mappings filter {
 case (file, name) => name endsWith ".conf" // only elements where this is true are kept
 }

 // now we copy the mapping but replace the mappings
 mapping.copy(mappings = filtered)

 } filter {
 // only keep those mappings that are nonEmpty (_.mappings.nonEmpty == true)
 _.mappings.nonEmpty
 }
}

Alter LinuxPackageMapping

To alter the permissions for all LinuxPackageMapping s that match a specific criteria:

// Altering permissions for configs
linuxPackageMappings := {
 val mappings = linuxPackageMappings.value
 // Changing the group for all configs
 mappings map {
 case linuxPackage if linuxPackage.fileData.config equals "true" =>
 // altering the group
 val newFileData = linuxPackage.fileData.copy(
 group = "appdocs"
)
 // altering the LinuxPackageMapping
 linuxPackage.copy(
 fileData = newFileData
)
 case linuxPackage => linuxPackage
 }
}

Alter LinuxSymlinks

To alter the permissions for all LinuxPackageMapping s that match a specific criteria:

// The same as linuxPackageMappings
linuxPackageSymlinks := {
 val links = linuxPackageSymlinks.value

 links filter { /* remove stuff */ } map { /* change stuff */}
}

Add Empty Directories

There is a special helper function that allows you to add empty directories to the package mappings. This might be
useful if the service needs some location to store files.

// Add an empty folder to mappings
linuxPackageMappings += packageTemplateMapping(s"/usr/share/${name.value}/lib/native")() withUser(name.value) withGroup(name.value)

Man Pages

There are many ways to document your projects, and many ways to expose them. While the native packager places
no limit on WHAT is included in a package, there are some things which receive special treatment.

Specifically: linux man pages.

To create a linux man page for the application, let’s create a src/linux/usr/share/man/man1/example-cli.1 file

.\" Process this file with
.\" groff -man -Tascii example-cli.1
.\"
.TH EXAMPLE_CLI 1 "NOVEMBER 2011" Linux "User Manuals"
.SH NAME
example-cli \- Example CLI
.SH SYNOPSIS
.B example-cli [-h]

Notice the location of the file. Any file under src/linux is automatically included,
relative to /, in linux packages (deb, rpm). That means the man file will not appear
in the universal package (confusing linux users).

Now that the man page is created, we can use a few tasks provided to view it in sbt. Let’s look in the sbt console

sbt generateManPages

We can use this task to work on the man pages and ensure they’ll look OK. You can also directly use groff to view
changes in your man pages.

In addition to providing the means to view the man page, the native packager will also automatically gzip man pages
for the distribution. The resulting man page is stored in /usr/share/man/man1/example-cli.1.gz in linux distributions.

Debian Plugin

The debian package specification is very robust and powerful. If you wish to do any advanced features, it’s best to understand how
the underlying packaging system works. Debian Binary Package Building HOWTO [http://tldp.org/HOWTO/html_single/Debian-Binary-Package-Building-HOWTO/] by Chr. Clemens Lee is an excellent tutorial.

SBT Native Packager provides two ways to build debian packages:

	A native implementation, where you need dpkg-deb installed, or

	A java, platform independent approach with jdeb [https://github.com/tcurdt/jdeb].

By default the native implementation is activated.

Note

The debian plugin depends on the Linux Plugin.

Requirements

If you use the native debian package implementation you need the following applications installed:

	dpkg-deb

	dpkg-sig

	dpkg-genchanges

	lintian

	fakeroot

Build

sbt debian:packageBin

Required Settings

A debian package needs some mandatory settings to be valid. Make sure
you have these settings in your build:

name := "Debian Example"

version := "1.0"

maintainer := "Max Smith <max.smith@yourcompany.io>"

packageSummary := "Hello World Debian Package"

packageDescription := """A fun package description of our software,
 with multiple lines."""

It’s not exactly mandatory, but still highly recommended to add
relevant JRE dependency, for example:

debianPackageDependencies := Seq("java8-runtime-headless")

Enable the debian plugin to activate the native package implementation.

enablePlugins(DebianPlugin)

JRE Dependencies

By default, a Debian package would have no dependencies, even for the
Java Runtime Environment (JRE). A startup script will seek JRE in
several popular locations, and, JRE is not found, the following
message would be displayed:

No java installations was detected.
Please go to http://www.java.com/getjava/ and download

To build a Debian package that integrates properly with Debian
repository environment, i.e. depends on a package that provides JRE,
one needs to specify JRE dependency using
debianPackageDependencies. Debian (Ubuntu and compatible
distributions as well) provides two families of virtual packages to do
that:

	javaN-runtime

	Regular (full) JRE packages, with GUI support. Use this for
applications requiring AWT/Swing support, OpenGL, sound, etc.

	javaN-runtime-headless

	Minimal JRE packages without GUI support, useful for server
installation to avoid pulling large set of X.org-related
packages. Use this for console-only applications, services,
networked / web applications, etc.

N in javaN should be replaced with minimal JRE version
required by the packaged application. It usually depends on a Scala
version used:

	Scala 2.11.x or earlier requires Java 6

	Scala 2.12.x requires Java 8

Note that these are virtual packages, which are provided by a set of
real packages. This means, for example, while installing a .deb
package that depends on java6-runtime-headless:

	If end-user has no suitable JRE installed, it would automatically
pull and install some “sane default” package which provides thing
functionality (typically, it would be openjdk-8-jre-headless).

	If end-user does not like default suggested JRE for some reason,
it’s possible to install any alternative implementation.

	If end-user has some existing JRE installation that is sufficient to
play that role (for example, openjdk-9-jre, which provides,
along others, java8-runtime-headless too), it would be used.

This dependency works equally well with both free/libre OpenJDK
packages supplied by Debian, and non-free JDKs supplied by Oracle and
packaged as .deb using make-jpkg utility [https://wiki.debian.org/JavaPackage] from Debian’s java-package [https://packages.debian.org/java-package].

Native packaging

Since JARs are by default already compressed, DebianPlugin disables additional compression of the debian package
contents.

To compress the debian package, override debianNativeBuildOptions with
options [http://man7.org/linux/man-pages/man1/dpkg-deb.1.html] for dpkg-deb.

debianNativeBuildOptions in Debian := Nil // dpkg-deb's default compression (currently xz)

debianNativeBuildOptions in Debian := Seq("-Zgzip", "-z3") // gzip compression at level 3

Note that commit cee091c released in 1.1.1 disables package re-compression by
default. While this works great with tools such as apt and dpkg, un-compressed
package installation is bugged in python-apt 8.8 series [https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=718330]. This bug prevents
installation of the generated debian package in the following configuration:

	installation using python-apt module, used by Ansible and SaltStack for
example,

	being on python-apt 8.8 series that’s on Debian Wheezy and perhaps older

It will fail with an error message like:

E: This is not a valid DEB archive, it has no 'data.tar.gz', 'data.tar.bz2' or 'data.tar.lzma' member

Solutions include:

	upgrading to Debian Jessie,

	upgrading python-apt, note that no official backport is known

	re-enabling package re-compression in sbt-native-packager, by overridding
debianNativeBuildOptions as described above.

Java based packaging

If you want to use the java based implementation, enable the following plugin:

enablePlugins(JDebPackaging)

and this to your plugins.sbt:

libraryDependencies += "org.vafer" % "jdeb" % "1.3" artifacts (Artifact("jdeb", "jar", "jar"))

JDeb is a provided dependency. You have to explicitly add it on your own. It brings a lot of dependencies
that could slow your build times. This is the reason the dependency is marked as provided.

Configurations

Settings and Tasks inherited from parent plugins can be scoped with Debian.

linuxPackageMappings in Debian := linuxPackageMappings.value

Settings

Debian requires the following specific settings:

	name in Debian

	The name of the package for debian (if different from general linux name).

	version in Debian

	The debian-friendly version of the package. Should be of the form x.y.z-build-aa.

	debianPackageConflicts in Debian

	The list of debian packages that this package conflicts with.

	debianPackageDependencies in Debian

	The list of debian packages that this package depends on.

	debianPackageProvides in Debian

	The list of debian packages that are provided by this package.

	debianPackageRecommends in Debian

	The list of debian packages that are recommended to be installed with this package.

	linuxPackageMappings in Debian

	Debian requires a /usr/share/doc/{package name}/changelog.gz file that describes
the version changes in this package. These should be appended to the base linux versions.

	maintainerScripts in Debian (debianMaintainerScripts)

	DEPRECATED use maintainerScripts in Debian instead.
These are the packaging scripts themselves used by dpkg-deb to build your debian. These
scripts are used when installing/uninstalling a debian, like prerm, postinstall, etc. These scripts
are placed in the DEBIAN file when building. Some of these files can be autogenerated,
for example when using a package archetype, like server_application. However, any autogenerated file
can be overridden by placing your own files in the src/debian/DEBIAN directory.

	changelog in Debian

	This is the changelog used by dpkg-genchanges to create the .changes file. This will allow you to
upload the debian package to a mirror.

Tasks

The Debian support grants the following commands:

	debian:package-bin

	Generates the .deb package for this project.

	debian:lintian

	Generates the .deb file and runs the lintian command to look for issues in the package. Useful for debugging.

	debian:gen-changes

	Generates the .changes, and therefore the .deb package for this project.

Customize

This section contains examples of how you can customize your debian build.

Customizing Debian Metadata

A Debian package provides metadata, which includes dependencies and recommendations.
This example adds a dependency on java and recommends a git installation.

debianPackageDependencies in Debian ++= Seq("java2-runtime", "bash (>= 2.05a-11)")

debianPackageRecommends in Debian += "git"

Hook Actions into the Debian Package Lifecycle

To hook into the debian package lifecycle (https://wiki.debian.org/MaintainerScripts) you
can add preinst , postinst , prerm and/or postrm scripts. Just place them into
src/debian/DEBIAN. Or you can do it programmatically in your build.sbt. This example adds actions to preinst and postinst:

import DebianConstants._
maintainerScripts in Debian := maintainerScriptsAppend((maintainerScripts in Debian).value)(
 Preinst -> "echo 'hello, world'",
 Postinst -> s"echo 'installed ${(packageName in Debian).value}'"
)

The helper methods can be found in MaintainerScriptHelper Scaladocs [http://www.scala-sbt.org/sbt-native-packager/latest/api/#com.typesafe.sbt.packager.MaintainerScriptHelper$].

If you use the JavaServerAppPackaging there are predefined postinst and
preinst files, which start/stop the application on install/remove calls. Existing
maintainer scripts will be extended not overridden.

Use a Different Castle Directory for your Control Scripts

Your control scripts are in a different castle.. directory? No problem.

debianControlScriptsDirectory <<= (sourceDirectory) apply (_ / "deb" / "control")

Rpm Plugin

RedHat rpm files support a number of very advanced features. To take full advantage of this environment,
it’s best to understand how the rpm package system works. How to create an RPM package [http://fedoraproject.org/wiki/How_to_create_an_RPM_package] on the fedora project wiki
is a good tutorial, but it focuses on building packages from source. The sbt-native-packager assumes that SBT has built your source and generated
binary packages.

Note

The rpm plugin depends on the Linux Plugin.

Requirements

You need the following applications installed

	rpm

	rpm-build

Build

sbt rpm:packageBin

Required Settings

A rpm package needs some mandatory settings to be valid. Make sure
you have these settings in your build:

rpmVendor := "typesafe"

1.0 or higher

Enables the rpm plugin

enablePlugins(RpmPlugin)

0.8 or lower

For this versions rpm packaging is automatically activated.
See the Getting Started page for information
on how to enable sbt native packager.

Configuration

Settings and Tasks inherited from parent plugins can be scoped with Rpm.

linuxPackageMappings in Rpm := linuxPackageMappings.value

Settings

Informational Settings

	packageName in Rpm

	The name of the package for the rpm.
Its value defines the first component of the rpm file name
(packageName-version-rpmRelease.packageArchitecture.rpm), as well as the Name:
tag in the spec file.
Its default value is drawn from packageName in Linux.

	version in Rpm

	The version of the package for rpm.
Takes the form x.y.z, and note that there can be no dashes in this version string.
It defines the second component of the rpm file name
(packageName-version-rpmRelease.packageArchitecture.rpm), as well as the Version:
tag in the spec file.
Its default value is drawn from the project defined version.

	rpmRelease

	The release number is the package’s version. When the sofware is first packaged at a
particular version, the release should be "1". If the software is repackaged at
the same version, the release number should be incremented, and dropped back to "1"
when the software version is new.
Its value defines the third component of the rpm file name
(packageName-version-rpmRelease.packageArchitecture.rpm), as well as the Release:
tag in the spec file.
Its default value is "1".

	packageArchitecture in Rpm

	The build architecture for the binary rpm.
Its value defines the fourth component of the rpm file name
(packageName-version-rpmRelease.packageArchitecture.rpm), as well as the BuildArch:
tag in the spec file.
Its default value is "noarch".

	packageSummary in Rpm

	A brief, one-line summary of the package.
Note: the summary must not contain line separators or end in a period.
Its value defines the Summary: tag in the spec file, and its default
value is drawn from packageSummary in Linux.

	packageDescription in Rpm

	A longer, multi-line description of the package.
Its value defines the %description block in the spec file, and its
default value is drawn from packageDescription in Linux.

	rpmVendor

	The name of the company/user generating the RPM.

	rpmUrl

	A url associated with the software in the RPM.

	rpmLicense

	The license associated with software in the RPM.

	rpmEpoch

	The epoch is the most significant number used when resolving different versions
for the same RPM. For a given package, packages with the highest epoch will be
used, and in the event of a tie it will fall back to comparing the version and
release.

	artifactPath in (Rpm, packageBin)

	The location of the generated RPM.

Dependency Settings

	rpmAutoreq

	Enable or disable the automatic processing of required packages.
Takes the form "yes" or "no", defaults to "yes".
Defines the AutoReq: tag in the spec file.

	rpmRequirements

	The RPM packages that are required to be installed for this RPM to work.

	rpmAutoprov

	Enable or disable the automatic processing of provided packages.
Takes the form "yes" or "no", defaults to "yes".
Defines the AutoProv: tag in the spec file.

	rpmProvides

	The RPM package names that this RPM provides.

	rpmPrerequisites

	The RPM packages this RPM needs before installation

	rpmObsoletes

	The packages this RPM allows you to remove

	rpmConflcits

	The packages this RPM conflicts with and cannot be installed with.

	rpmSetarch[SettingKey[Option[String]]]

	Run rpmbuild via Linux setarch command. Use this for cross-platform builds.

Meta Settings

	rpmPrefix

	The path passed set as the base for the revocable package

	rpmChangelogFile

	External file to be imported and used to generate the changelog of the RPM.

Scriptlet Settings

	maintainerScripts in Rpm

	Contains the scriptlets being injected into the specs file. Currently supports all
previous scriptlets: %pretrans, %pre, %verifyscript%, %post, %posttrans,
%preun and %postun

	rpmBrpJavaRepackJars

	appends __os_install_post scriptlet to rpmPre avoiding jar repackaging

SystemV Start Script Settings

	rpmDaemonLogFile

	File name of the log generated by application daemon.

Tasks

The Rpm plugin support grants the following commands:

	rpm:package-bin

	Generates the .rpm package for this project.

	rpm:rpm-lint

	Generates the .rpm file and runs the rpmlint command to look for issues in the package. Useful for debugging.

Customize

Rpm Prefix

The rpm prefix allows you to create a relocatable package as defined by http://www.rpm.org/max-rpm/s1-rpm-reloc-prefix-tag.html.
This optional setting with a handful of overrides to scriptlets and templates will allow you to create a working java_server
archetype that can be relocated in the file system.

Example Settings:

defaultLinuxInstallLocation := "/opt/package_root",
rpmPrefix := Some(defaultLinuxInstallLocation),
linuxPackageSymlinks := Seq.empty,
defaultLinuxLogsLocation := defaultLinuxInstallLocation + "/" + name

rpmChangelogFile

The rpmChangelogFile property allows you to set a source that will be imported and used on the RPM generation.
So if you use rpm commands to see the changelog it brings that information. You have to create the content in
the changelog file using the RPM conventions that are available here http://fedoraproject.org/wiki/Packaging:Guidelines#Changelogs.

Example Settings:

changelog := "changelog.txt"

rpmChangelogFile := Some(changelog)

* Sun Aug 24 2014 Team <contact@example.com> - 1.1.0
-Allow to login using social networks
* Wed Aug 20 2014 Team <contact@example.com> - 1.0.1
-Vulnerability fix.
* Tue Aug 19 2014 Team <contact@example.com> - 1.0.0
-First version of the system

Scriptlet Changes

Changing scriptlets can be done in two ways:

	Override the maintainerScripts in Rpm, or

	Place new scripts in the src/rpm/scriptlets

To override the ``maintainerScripts in Rpm`` you can override the command string explicitly,
create a command string using appends and/or replacements,
or even get a command string from a file source.

For example:

// overriding
import RpmConstants._
maintainerScripts in Rpm := Map(
 Pre -> Seq("""echo "pre-install""""),
 Post -> Seq("""echo "post-install""""),
 Pretrans -> Seq("""echo "pretrans""""),
 Posttrans -> Seq("""echo "posttrans""""),
 Preun -> Seq("""echo "pre-uninstall""""),
 Postun -> Seq("""echo "post-uninstall"""")
)

// appending with strings and replacements
import RpmConstants._
maintainerScripts in Rpm := maintainerScriptsAppend((maintainerScripts in Rpm).value)(
 Pretrans -> "echo 'hello, world'",
 Post -> s"echo 'installing ${(packageName in Rpm).value}'"
)

// appending from a different file
import RpmConstants._
maintainerScripts in Rpm := maintainerScriptsAppendFromFile((maintainerScripts in Rpm).value)(
 Pretrans -> (sourceDirectory.value / "rpm" / "pretrans"),
 Post -> (sourceDirectory.value / "rpm" / "posttrans")
)

The helper methods can be found in MaintainerScriptHelper Scaladocs [http://www.scala-sbt.org/sbt-native-packager/latest/api/#com.typesafe.sbt.packager.MaintainerScriptHelper$].

To place new scripts in the src/rpm/scriptlets folder you simply put the commands into the appropriate scriptlet file.
(The scriptlet file names can be found in the RPM Scaladocs [http://www.scala-sbt.org/sbt-native-packager/latest/api/#com.typesafe.sbt.packager.rpm.RpmPlugin$$Names$].)

src/rpm/scriptlets/preinst

...
echo "PACKAGE_PREFIX=${RPM_INSTALL_PREFIX}" > /etc/sysconfig/${{app_name}}
...

src/rpm/scriptlets/preun

...
rm /etc/sysconfig/${{app_name}}
...

Using scriptlet files like this will override all previous contents.

Scriptlet Migration from 1.0.x

Before

rpmPostun := rpmPost.value.map { content =>
 s"""|$content
 |echo "I append this to the current content
 |""".stripMargin
 }.orElse {
 Option("""echo "There wasn't any previous content"
 """.stripMargin)
 }

After

// this gives you easy access to the correct keys
import RpmConstants._
// in order to append you have to pass the initial maintainerScripts map
maintainerScripts in Rpm := maintainerScriptsAppend((maintainerScripts in Rpm).value)(
 Pretrans -> "echo 'hello, world'",
 Post -> s"echo 'installing ${(packageName in Rpm).value}'"
)

Jar Repackaging

RPM repackages jars by default in order to optimize jars.
Repacking is turned off by default. In order to enable it, set:

rpmBrpJavaRepackJars := true

Note that this appends content to your Pre definition, so make sure not to override it.
For more information on this topic follow these links:

	issue #195 [https://github.com/sbt/sbt-native-packager/issues/195]

	pullrequest #199 [https://github.com/sbt/sbt-native-packager/pull/199]

	OpenSuse issue [https://github.com/sbt/sbt-native-packager/issues/215]

Marking config files as noreplace

By default, rpm replaces config files on disk when the content has changed between two version. Often, this is not desirable
as configurations are often customized and should not change during updates. rpm provides a means to turn of the default behaviour
by marking config files as noreplace in the spec file. In order to enable this for the build, we provide a helper method that
can be used to modify all config file mappings:

linuxPackageMappings in Rpm := configWithNoReplace((linuxPackageMappings in Rpm).value)

This will mark all config files as noreplace and prevent them from being changed during updates. Please note that the linuxPackageMappings are scoped to the Rpm plugin. This is necessary in order to catch all config files relevant to the rpm package and mark them correctly.

Docker Plugin

Docker images describe how to set up a container for running an application, including what files are present, and what program to run.

https://docs.docker.com/introduction/understanding-docker/ provides an introduction to Docker.

https://docs.docker.com/reference/builder/ describes the Dockerfile: a file which describes how to set up the image.

sbt-native-packager focuses on creating a Docker image which can “just run” the application built by SBT.

Note

The docker plugin depends on the Universal Plugin.

Requirements

You need the version 1.10 or higher of the docker console client installed.
SBT Native Packager doesn’t use the REST API, but instead uses the CLI directly.

It is currently not possible [https://github.com/sbt/sbt-native-packager/issues/654] to provide authentication
for Docker repositories from within the build. The docker binary used by the build should already have been configured
with the appropriate authentication details. See https://docs.docker.com/engine/reference/commandline/login/ how to login
to a Docker registry with username and password.

Build

sbt docker:publishLocal

Required Settings

enablePlugins(DockerPlugin)

Spotify java based docker client

You can also use the java-based spotify Docker client. Add this to your build.sbt

enablePlugins(DockerSpotifyClientPlugin)

and this to your plugins.sbt

libraryDependencies += "com.spotify" % "docker-client" % "8.9.0"

The Docker-spotify client is a provided dependency. You have to explicitly add it on your own. It brings a lot of dependencies
that could slow your build times. This is the reason the dependency is marked as provided.

Configuration

Settings and Tasks inherited from parent plugins can be scoped with Docker.

mappings in Docker := mappings.value

Settings

Informational Settings

	packageName in Docker

	The name of the package for Docker (if different from general name).
This will only affect the image name.

	version in Docker

	The version of the package for Docker (if different from general version). Often takes the form x.y.z.

	maintainer in Docker

	The maintainer of the package, recommended by the Dockerfile format.

Environment Settings

	dockerBaseImage

	The image to use as a base for running the application. It should include binaries on the path for chown, mkdir, have a discoverable java binary, and include the user configured by daemonUser (daemon, by default).

	daemonUser in Docker

	The user to use when executing the application. Files below the install path also have their ownership set to this user.

	dockerExposedPorts

	A list of TCP ports to expose from the Docker image.

	dockerExposedUdpPorts

	A list of UDP ports to expose from the Docker image.

	dockerExposedVolumes

	A list of data volumes to make available in the Docker image.

	dockerLabels

	A map of labels that will be applied to the Docker image.

	dockerEnvVars

	A map of environment variables that will be applied to the Docker image.

	dockerEntrypoint

	Overrides the default entrypoint for docker-specific service discovery tasks before running the application.
Defaults to the bash executable script, available at bin/<script name> in the current WORKDIR of /opt/docker.

	dockerPermissionStrategy

	The strategy that decides how file permissions are set for the working directory inside the Docker image

	DockerPermissionStrategy.MultiStage (default) uses multi-stage Docker build to call chmod ahead of time.

	DockerPermissionStrategy.None does not attempt to change the file permissions, and use the host machine’s file mode bits.

	DockerPermissionStrategy.Run calls RUN in the Dockerfile. This has regression on the resulting Docker image file size.

	DockerPermissionStrategy.CopyChown calls COPY --chown in the Dockerfile. Provided as a backward compatibility.

	dockerChmodType

	The file permissions for the files copied into Docker image when MultiStage or Run strategy is used.

	DockerChmodType.UserGroupReadExecute (default): chmod u=rX,g=rX

	DockerChmodType.UserGroupRead: chmod u=r,g=r

	DockerChmodType.UserGroupWriteExecute: chmod u=rwX,g=rwX

	DockerChmodType.SyncGroupToUser: chmod g=u

	DockerChmodType.UserGroupPlusExecute: chmod u+x,g+x (This is for dockerAdditionalPermissions)

	DockerChmodType.Custom: Custom argument provided by the user.

	dockerAdditionalPermissions

	Additional permissions typically used to give chmod +x rights for the executable files. By default generated Bash scripts are given DockerChmodType.UserGroupPlusExecute.

	dockerVersion

	The docker server version. Used to leverage new docker features while maintaining backwards compatibility.

	dockerApiVersion

	The docker server API version. Used to leverage new docker features while maintaining backwards compatibility.

	dockerGroupLayers

	The function mapping files into separate layers to increase docker cache hits.
Lower index means the file would be a part of an earlier layer.
The main idea behind this is to COPY dependencies *.jar’s first as they should change rarely.
In separate command COPY the application *.jar’s that should change more often.
Defaults to detect whether the file name starts with ThisBuild / organization.
To disable layers map all files to no layer using dockerGroupLayers in Docker := PartialFunction.empty.

Publishing Settings

	dockerRepository

	The repository to which the image is pushed when the docker:publish task is run. This should be of the form [repository.host[:repository.port]] (assumes use of the index.docker.io repository) or [repository.host[:repository.port]][/username] (discouraged, but available for backwards compatibilty.).

	dockerUsername

	The username or organization to which the image is pushed when the docker:publish task is run. This should be of the form [username] or [organization].

	dockerUpdateLatest

	The flag to automatic update the latest tag when the docker:publish task is run. Default value is FALSE. In order to use this setting, the minimum docker console version required is 1.10. See https://github.com/sbt/sbt-native-packager/issues/871 for a detailed explanation.

	dockerAlias

	The alias to be used for tagging the resulting image of the Docker build.
The type of the setting key is DockerAlias.
Defaults to [dockerRepository/][dockerUsername/][packageName]:[version].

	dockerAliases

	The list of aliases to be used for tagging the resulting image of the Docker build.
The type of the setting key is Seq[DockerAlias].
Alias values are in format of [dockerRepository/][dockerUsername/][packageName]:[tag] where tags are list of including your project version and latest tag(if dockerUpdateLatest is enabled).
To append additional aliases to this list, you can add them by extending dockerAlias.
dockerAliases ++= Seq(dockerAlias.value.withTag(Option("stable")), dockerAlias.value.withRegistryHost(Option("registry.internal.yourdomain.com")))

	dockerBuildOptions

	Overrides the default Docker build options.
Defaults to Seq("--force-rm", "-t", "[dockerAlias]"). This default is expanded if dockerUpdateLatest is set to true.

	dockerExecCommand

	Overrides the default Docker exec command.
Defaults to Seq("docker")

	dockerBuildCommand

	Overrides the default Docker build command. The reason for this is that many systems restrict docker execution to root, and while the accepted guidance is to alias the docker command alias docker='/usr/bin/docker', neither Java nor Scala support passing aliases to sub-processes, and most build systems run builds using a non-login, non-interactive shell, which also have limited support for aliases, which means that the only viable option is to use sudo docker directly.
Defaults to Seq("[dockerExecCommand]", "build", "[dockerBuildOptions]", ".").

	dockerRmiCommand

	Overrides the default Docker rmi command. This may be used if force flags or other options need to be passed to the command docker rmi.
Defaults to Seq("[dockerExecCommand]", "rmi") and will be directly appended with the image name and tag.

	dockerAutoremoveMultiStageIntermediateImages

	If intermediate images should be automatically removed when MultiStage strategy is used.
Intermediate images usually aren’t needed after packaging is finished and therefore defaults to true.
All intermediate images are labeled snp-multi-stage=intermediate.
If set to false and you want to remove all intermediate images at a later point, you can therefore do that by filtering for this label:
docker image prune -f --filter label=snp-multi-stage=intermediate

Tasks

The Docker plugin provides the following commands:

	docker:stage

	Generates a directory with the Dockerfile and environment prepared for creating a Docker image.

	docker:publishLocal

	Builds an image using the local Docker server.

	docker:publish

	Builds an image using the local Docker server, and pushes it to the configured remote repository.

	docker:clean

	Removes the built image from the local Docker server.

Customize

There are some predefined settings which you can easily customize. These
settings are explained in some detail in the next sections. If you want to
describe your Dockerfile completely yourself, you can provide your own
docker commands as described in Custom Dockerfile.

Docker Image Name and Version

packageName in Docker := packageName.value

version in Docker := version.value

Docker Base Image

dockerBaseImage := "openjdk"

Docker Repository

dockerRepository := Some("dockeruser")

Docker Image Customization

dockerExposedPorts := Seq(9000, 9443)

dockerExposedVolumes := Seq("/opt/docker/logs")

In order to work properly with USER daemon the exposed volumes are first
created (if they do not exist) and then chowned.

Install Location

The path to which the application is written can be changed with the location setting.
The files from mappings in Docker are extracted underneath this directory.

defaultLinuxInstallLocation in Docker := "/opt/docker"

Daemon User

By default, sbt Native Packager will create a daemon user named demiourgos728
whose UID is set to 1001, and and emit USER 1001 since running as non-root is considered the best practice.

The following can be used to emit USER daemon instead:

daemonUserUid in Docker := None
daemonUser in Docker := "daemon"

File Permission

By default, the working directory inside the Docker image is given read-only file permissions
set using multi-stage Docker build, which requires Docker 17.5 or later (watch out if you’re using older Minikube).

If you want to make the working directory writable by the running process, here’s the setting:

import com.typesafe.sbt.packager.docker.DockerChmodType

dockerChmodType := DockerChmodType.UserGroupWriteExecute

By default, the shell scripts generated by SBT Native Packager are given chmod +x rights. Here’s the setting to do so for other files:

import com.typesafe.sbt.packager.docker.DockerChmodType

dockerAdditionalPermissions += (DockerChmodType.UserGroupPlusExecute, "/opt/docker/bin/hello")

If you don’t want SBT Native Packager to change the file permissions at all here’s a strategy you can choose:

import com.typesafe.sbt.packager.docker.DockerPermissionStrategy

dockerPermissionStrategy := DockerPermissionStrategy.None

This will inherit the file mode bits set in your machine. Given that Kubernetes implementations like OpenShift will use an arbitrary user,
remember to set both the user bits and group bits when running chmod yourself.

Custom Dockerfile

All settings before are used to create a single sequence of docker commands.
You have the option to write all of them on your own, filter or change existing
commands or simply add some.

First of all you should take a look what you docker commands look like.
In your sbt console type

> show dockerCommands
[info] List(Cmd(FROM,openjdk:8), Cmd(LABEL,MAINTAINER=Your Name <y.n@yourcompany.com>), ...)

Remove Commands

SBT Native Packager adds commands you may not need. For example,
the chowning of a exposed volume:

import com.typesafe.sbt.packager.docker._

// we want to filter the chown command for '/data'
dockerExposedVolumes += "/data"

// use filterNot to return all items that do NOT meet the criteria
dockerCommands := dockerCommands.value.filterNot {

 // ExecCmd is a case class, and args is a varargs variable, so you need to bind it with @
 case ExecCmd("RUN", args @ _*) => args.contains("chown") && args.contains("/data")

 // don't filter the rest; don't filter out anything that doesn't match a pattern
 case cmd => false
}

Add Commands

Since dockerCommands is just a Sequence, adding commands is straightforward:

import com.typesafe.sbt.packager.docker._

// use += to add an item to a Sequence
dockerCommands += Cmd("USER", (daemonUser in Docker).value)

// use ++= to merge a sequence with an existing sequence
dockerCommands ++= Seq(
 // setting the run script executable
 ExecCmd("RUN",
 "chmod", "u+x",
 s"${(defaultLinuxInstallLocation in Docker).value}/bin/${executableScriptName.value}"),
 // setting a daemon user
 Cmd("USER", "daemon")
)

Write from Scratch

You can simply wipe out all docker commands with

dockerCommands := Seq()

Now let’s start adding some Docker commands.

import com.typesafe.sbt.packager.docker._

dockerCommands := Seq(
 Cmd("FROM", "openjdk:8"),
 Cmd("LABEL", s"""MAINTAINER="${maintainer.value}""""),
 ExecCmd("CMD", "echo", "Hello, World from Docker")
)

Busybox/Ash Support

Busybox is a popular minimal Docker base image that uses ash [https://en.wikipedia.org/wiki/Almquist_shell], a much
more limited shell than bash. By default, the Java archetype (Java Application Archetype) generates two files for shell
support: a bash file, and a Windows .bat file. If you build a Docker image for Busybox using the defaults, the
generated bash launch script will likely not work.

To handle this, you can use AshScriptPlugin, an ash-compatible archetype that is derived from the Java Application Archetype archetype.
. Enable this by including:

enablePlugins(AshScriptPlugin)

With this plugin enabled an ash-compatible launch script will be generated in your Docker image.

Just like for Java Application Archetype, you have the option of overriding the default script by supplying
your own src/templates/ash-template file. When overriding the file don’t forget to include
${{template_declares}} somewhere to populate $app_classpath $app_mainclass from your sbt project.
You’ll likely need these to launch your program.

Windows Plugin

Windows packaging is completely tied to the WIX installer toolset. For any non-trivial package,
it’s important to understand how WIX works. http://wix.tramontana.co.hu/ is an excellent tutorial
to how to create packages using wix.

However, the native-packager provides a simple layer on top of wix that may be enough for most projects.
If it is not enough, just override wixConfig or wixFiles tasks. Let’s look at the layer above direct
xml configuration.

Note

The windows plugin depends on the Universal Plugin.

Requirements

You need the following applications installed

	WIX Toolset [http://wixtoolset.org/]

Build

sbt windows:packageBin

Required Settings

A windows package needs some mandatory settings to be valid. Make sure
you have these settings in your build:

// general package information (can be scoped to Windows)
maintainer := "Josh Suereth <joshua.suereth@typesafe.com>"
packageSummary := "test-windows"
packageDescription := """Test Windows MSI."""

// wix build information
wixProductId := "ce07be71-510d-414a-92d4-dff47631848a"
wixProductUpgradeId := "4552fb0e-e257-4dbd-9ecb-dba9dbacf424"

1.0 or higher

Enables the windows plugin

enablePlugins(WindowsPlugin)

0.8 or lower

For these versions windows packaging is automatically activated.
See the Getting Started page for information
on how to enable sbt-native-packager.

Configuration

Settings and Tasks inherited from parent plugins can be scoped with Universal.

mappings in Windows := (mappings in Universal).value

Now, let’s look at the full set of windows settings.

Settings

	name in Windows

	The name of the generated msi file.

	candleOptions

	the list of options to pass to the candle.exe command.

	lightOptions

	the list of options to pass to the light.exe command. Most likely setting is: Seq("-ext", "WixUIExtension", "-cultures:en-us") for UI.

	wixMajorVersion

	the major version of the Wix tool-set (e.g. when using Wix 4.0.1, major version is 4). Default is 3.

	wixProductId

	The GUID to use to identify the windows package/product.

	wixProductUpgradeId

	The GUID to use to identify the windows package/product upgrade identifier (See the wix docs on upgrades [http://wixtoolset.org/documentation/manual/v3/howtos/updates/major_upgrade.html]).

	wixPackageInfo

	The information used to autoconstruct the <Product><Package/> portion of the wix xml. Note: unused if ``wixConfig`` is overridden

	wixProductLicense

	An (optional) rtf file to display as the product license during installation. Defaults to src/windows/License.rtf

	wixFeatures

	A set of windows features that users can install with this package. Note: unused if ``wixConfig`` is overridden

	wixProductConfig

	inline XML to use for wix configuration. This is everything nested inside the <Product> element.

	wixConfig

	inline XML to use for wix configuration. This is used if the wixFiles task is not specified.

	wixFiles

	WIX xml source files (wxs) that define the build.

	mappings in packageMsi in Windows

	A list of file->location pairs. This list is used to move files into a location where WIX can pick up the files and generate a cab or embedded cab for the msi.
The WIX xml should use the relative locations in this mappings when referencing files for the package.

Tasks

	windows:packageBin

	Creates the msi package.

	wixFile

	Generates the Wix xml file from wixConfig and wixProductConfig setings, unless overriden.

The native-packager plugin provides a few handy utilities for generating Wix XML. These
utilities are located in the com.typesafe.packager.windows.WixHelper object. Among
these are the following functions:

	cleanStringForId(String): String

	Takes in a string and returns a wix-friendly identifier. Note: truncates to 50 characters.

	cleanFileName(String): String

	Takes in a file name and replaces any $ with $$ to make it past the Wix preprocessor.

	generateComponentsAndDirectoryXml(File): (Seq[String], scala.xml.Node)

	This method will take a file and generate <Directory>, <Component> and <File>
XML elements for all files/directories contained in the given file. It will return the
Id settings for any generated components. This is a handy way to package a large
directory of files for usage in the Features of an MSI.

Customize

Feature configuration

The abstraction over wix allows you to configure “features” that users may optionally install. These feature are higher level things,
like a set of files or menu links. The currently supported components of features are:

	Files (ComponentFile)

	Path Configuration (AddDirectoryToPath)

	Menu Shortcuts (AddShortCuts)

To create a new feature, simple instantiate the WindowsFeature class with the desired feature components that are included.

Here’s an example feature that installs a binary file (cool.jar) and a script (cool.bat), and adds a directory to the PATH:

wixFeatures += WindowsFeature(
 id="BinaryAndPath",
 title="My Project's Binaries and updated PATH settings",
 desc="Update PATH environment variables (requires restart).",
 components = Seq(
 ComponentFile("bin/cool.bat"),
 ComponentFile("lib/cool.jar"),
 AddDirectoryToPath("bin"))
)

All file references should line up exactly with those found in the mappings in Windows configuration. When generating a MSI, the plugin will first create
a directory using all the mappings in Windows and configure this for inclusion in a cab file. If you’d like to add files to include, these must first
be added to the mappings, and then to a feature. For example, if we complete the above setting to include file mappings, we’d have the following:

mappings in Windows ++= (packageBin in Compile, sourceDirectory in Windows) map { (jar, dir) =>
 Seq(jar -> "lib/cool.jar", (dir / "cool.bat") -> "bin/cool.bat")
}

wixFeatures += WindowsFeature(
 id="BinaryAndPath",
 title="My Project's Binaries and updated PATH settings",
 desc="Update PATH environment variables (requires restart).",
 components = Seq(
 ComponentFile("bin/cool.bat"),
 ComponentFile("lib/cool.jar"),
 AddDirectoryToPath("bin"))
)

Right now this layer is very limited in what it can accomplish, and hasn’t been heavily debugged. If you’re interested in helping contribute, please
do so! However, for most command line tools, it should be sufficient for generating a basic msi that Windows users can install.

JDKPackager Plugin

This plugin builds on Oracle’s javapackager [https://docs.oracle.com/javase/8/docs/technotes/guides/deploy/packager.html#CCHIHIIJ] tool to generate native application
launchers and installers for macOS, Windows, and Linux. This plugin takes the settings and staged output from
Java Application Archetype and passes them through javapackager
to create native formats per Oracle’s provided features.

The actual mechanism used by this plugin is the support provided by the lib/ant-javafx.jar Ant task library,
which provides more capabilities than the javapackager command line version, but the idea is the same.

This plugin’s most relevant addition to the core sbt-native-packager capabilities is the generation of macOS App
bundles and associated .dmg and .pkg package formats. With this plugin complete drag-and-drop installable
application bundles are possible, including the embedding of the JRE. It can also generate Windows .exe and .msi
installers provided the requisite tools are available on the Windows build platform (see below). While Linux package
formats are also possible via this plugin, it is likely the native sbt-native-packager support for .deb and
.rpm formats will provide more configurability.

Note

The JDKPackagerPlugin depends on the Universal Plugin, Java Application Archetype and Launcher Plugin

Requirements

The ant-javafx.jar library comes with Oracle JDK 8, found in the lib directory along with tools.jar
and friends. If sbt is running under the JVM in Oracle JDK 8, then the plugin should be able to find the path to
ant-javafx.jar. If sbt is running under a different JVM, then the path to the tool will have to be specified
via the jdkPackager:antPackagerTasks setting.

This plugin must be run on the platform of the target installer. The Oracle tooling does not provide a means of
creating, say, Windows installers on MacOS, or MacOS on Linux, etc.

To use create Windows launchers & installers, the either the WIX Toolset (msi) or Inno Setup (exe) is required:

	WIX Toolset [http://wixtoolset.org/]

	Inno Setup [http://www.jrsoftware.org/isinfo.php]

For further details on the capabilities of javapackager, see the
Windows [http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javapackager.html] and
Unix [http://docs.oracle.com/javase/8/docs/technotes/tools/unix/javapackager.html] references.
(Note: only a few of the possible settings are exposed through this plugin. Please submit a
Github [https://github.com/sbt/sbt-native-packager/issues] issue or pull request if something specific is desired.)

Enabling

The plugin is enabled via the AutoPlugins facility:

enablePlugins(JDKPackagerPlugin)

Build

To use, first get your application working per Java Application Archetype instructions (including the mainClass setting). Once that is working, run

sbt jdkPackager:packageBin

By default, the plugin makes the installer type that is native to the current build platform. The installer is put in the directory
target/jdkpackager/bundles. The key jdkPackageType can be used to modify this behavior. Run
help jdkPackageType in sbt for details. The most popular setting is likely to be jdkAppIcon.

Settings

For the latest documentation reference the key descriptions in sbt.

	jdkPackagerBasename

	Filename without the extension for the generated installer package.

	jdkPackagerType

	Value passed as the native attribute to fx:deploy task.

Per javapackager [https://docs.oracle.com/javase/8/docs/technotes/guides/deploy/packager.html#CCHIHIIJ] documentation, this may be one of the following:

	all: Runs all of the installers for the platform on which it is running, and creates a disk image for the application.

	installer: Runs all of the installers for the platform on which it is running.

	image: Creates a disk image for the application. On macOS, the image is the .app file. On Linux, the image is the directory that gets installed.

	dmg: Generates a DMG file for macOS.

	pkg: Generates a .pkg package for macOS.

	mac.appStore: Generates a package for the Mac App Store.

	rpm: Generates an RPM package for Linux.

	deb: Generates a Debian package for Linux.

	exe: Generates a Windows .exe package.

	msi: Generates a Windows Installer package.

Note

Because only a subset of the possible settings are exposed through the plugin, updates are likely required to fully
make use of all formats. dmg is currently the most tested type.

	jdkAppIcon

	Path to platform-specific application icon:

	icns: MacOS

	ico: Windows

	png: Linux

Defaults to a generically bland Java icon. Oracle javafx ant task reference [http://docs.oracle.com/javase/8/docs/technotes/guides/deploy/javafx_ant_task_reference.html#CACFJBFJ]

	jdkPackagerToolkit

	GUI toolkit used in app. Either JavaFXToolkit (default) or SwingToolkit

	jdkPackagerJVMArgs

	Sequence of arguments to pass to the JVM.

Default: Seq("-Xmx768m").

Oracle JVM argument docs [http://docs.oracle.com/javase/8/docs/technotes/guides/deploy/javafx_ant_task_reference.html#CIAHJIJG]

	jdkPackagerAppArgs

	List of command line arguments to pass to the application on launch.

Default: Seq.empty

Oracle arguments docs [http://docs.oracle.com/javase/8/docs/technotes/guides/deploy/javafx_ant_task_reference.html#CACIJFHB]

	jdkPackagerProperties

	Map of System properties to define in application.

Default: Map.empty

Oracle properties docs [http://docs.oracle.com/javase/8/docs/technotes/guides/deploy/javafx_ant_task_reference.html#CIAHCIFJ]

	jdkPackagerAssociations

	Set of application file associations to register for the application.

Example: jdkPackagerAssociations := Seq(FileAssociation("foo", "application/x-foo", Foo Data File", iconPath))

Default: Seq.empty

Note: Requires JDK >= 8 build 40.

Oracle associations docs [http://docs.oracle.com/javase/8/docs/technotes/guides/deploy/javafx_ant_task_reference.html#CIAIDHBJ]

Example

To take it for a test spin, run sbt jdkPackager:packageBin in the test-project-jdkpackager directory of the sbt-native-packager source. Then look in the target/jdkpackager/bundles directory for the result (specific name depends on platform built).

Here’s what the build file looks like:

name := "JDKPackagerPlugin Example"

version := "0.1.0"

organization := "com.foo.bar"

libraryDependencies ++= Seq(
 "com.typesafe" % "config" % "1.2.1"
)

mainClass in Compile := Some("ExampleApp")

enablePlugins(JDKPackagerPlugin)

maintainer := "Previously Owned Cats, Inc."

packageSummary := "JDKPackagerPlugin example package thingy"

packageDescription := "A test package using Oracle's JDK bundled javapackager tool."

lazy val iconGlob = sys.props("os.name").toLowerCase match {
 case os if os.contains("mac") ⇒ "*.icns"
 case os if os.contains("win") ⇒ "*.ico"
 case _ ⇒ "*.png"
}

jdkAppIcon := (sourceDirectory.value ** iconGlob).getPaths.headOption.map(file)

jdkPackagerType := "installer"

jdkPackagerJVMArgs := Seq("-Xmx1g")

jdkPackagerProperties := Map("app.name" -> name.value, "app.version" -> version.value)

jdkPackagerAppArgs := Seq(maintainer.value, packageSummary.value, packageDescription.value)

jdkPackagerAssociations := Seq(
 FileAssociation("foobar", "application/foobar", "Foobar file type"),
 FileAssociation("barbaz", "application/barbaz", "Barbaz file type", jdkAppIcon.value)
)

// Example of specifying a fallback location of `ant-javafx.jar` if plugin can't find it.
(antPackagerTasks in JDKPackager) := (antPackagerTasks in JDKPackager).value orElse {
 for {
 f <- Some(file("/usr/lib/jvm/java-8-oracle/lib/ant-javafx.jar")) if f.exists()
 } yield f
}

Debugging

If you are having trouble figuring out how certain features affect the generated package, you can find the Ant-based build definition file in target/jdkpackager/build.xml. You should be able to run Ant directly in that file assuming jdkPackager:packageBin has been run at least once.

GraalVM Native Image Plugin

GraalVM’s native-image compiles Java programs AOT (ahead-of-time) into native binaries.

https://www.graalvm.org/docs/reference-manual/aot-compilation/ documents the AOT compilation of GraalVM.

The plugin supports both using a local installation of the GraalVM native-image utility, or building inside a
Docker container. If you intend to run the native image on Linux, then building inside a Docker container is
recommended since GraalVM native images can only be built for the platform they are built on. By building in a Docker
container, you can build Linux native images not just on Linux but also on Windows and macOS.

Requirements

To build using a local installation of GraalVM, you must have the native-image utility of GraalVM in your PATH.

native-image quick installation

To get started quickly, eg make native-image available in your PATH,
you may reuse the script that is used for sbt-native-packager’s continuous integration.
To do so, run the following. It will install GraalVM 1.0.0-rc8.

source <(curl -o - https://raw.githubusercontent.com/sbt/sbt-native-packager/master/.travis/download-graalvm)

Build

sbt 'show graalvm-native-image:packageBin'

Required Settings

enablePlugins(GraalVMNativeImagePlugin)

Settings

native-image Executable Command (Pay attention if you are using Windows OS)

Putting native-image in PATH does not work for Windows. native-image is a batch file in Windows that calls another executable to compile the Java classes to a standalone executable. Therefore, the full path to the batch file e.g. C:\Program Files\Java\graalvm\bin\native-image.cmd must be provided. It is important to include .cmd.

	graalVMNativeImageCommand

	Set this parameter to point to native-image or native-image.cmd. For Linux, set this parameter if it is inconvenient to make native-image available in your PATH.

For example:

graalVMNativeImageCommand := "C:/Program Files/Java/graalvm/bin/native-image.cmd"

Docker Image Build Settings

By default, a local build will be done, expecting the native-image command to be on your PATH. This can be
customized using the following settings.

	graalVMNativeImageGraalVersion

	Setting this enables generating a Docker container to build the native image, and then building it in that container.
It must correspond to a valid version of the
Oracle GraalVM Community Edition Docker image [https://hub.docker.com/r/oracle/graalvm-ce/]. This setting has no
effect if containerBuildImage is explicitly set.

For example:

graalVMNativeImageGraalVersion := Some("19.1.1")

containerBuildImage

Explicitly set a build image to use. The image must execute the Graal native-image command as its entry point.
It can be configured like so:

containerBuildImage := Some("my-docker-username/graalvm-ce-native-image:19.1.1")

A helper is provided to automatically generate a container build image from a base image that contains a Graal
installation. For example, if you have a GraalVM enterprise edition docker image, you can turn it into a native
image builder like so:

containerBuildImage := GraalVMNativeImagePlugin.generateContainerBuildImage("example.com/my-username/graalvm-ee:latest")

The plugin will not build the native image container builder if it finds it in the local Docker registry already.
The native image builders tag name can be seen in the logs if you wish to delete it to force a rebuild, in the above
case, the name will be example.com-my-username-graalvm-ee:latest.

Publishing Settings

	graalVMNativeImageOptions

	Extra options that will be passed to the native-image command. By default, this includes the name of the main class.

GraalVM Resources

If you are building the image in a docker container, and you have any resources that need to be available to the
native-image command, such as files passed to -H:ResourceConfigurationFiles or
-H:ReflectionConfigurationFiles, you can place these in your projects src/graal directory. Any files in there
will be made available to the native-image docker container under the path /opt/graalvm/stage/resources.

Tasks

The GraalVM Native Image plugin provides the following commands:

	graalvm-native-image:packageBin

	Generates a native image using GraalVM.

Project Archetypes

Archetype plugins provide predefined configurations for your build. Like format plugins,
archetype plugins can depend on other archetype plugins to extend existing functionality.

Project archetypes are default deployment scripts that try to “do the right thing” for a given type of project.
Because not all projects are created equal, there is no single archetype for all native packages, but a set
of them to choose from.

	Java Command Line Application

	Java Server Application

	Systemloaders

	Configuration Archetypes

	Jlink Plugin

	An archetype cheatsheet

Java Application Archetype

Application packaging focuses on how your application is launched (via a bash or bat script), how dependencies
are managed and how configuration and other auxiliary files are included in the final distributable. The
JavaAppPackaging archetype provides a default application structure and executable scripts to launch your application.

Additionally there is Java Server Application Archetype which provides platform-specific functionality for installing your
application in server environments. You can customize specific debian and rpm packaging for a variety of platforms and
init service loaders including Upstart, System V and SystemD.

Features

The JavaAppPackaging archetype contains the following features.

	Default application mappings (no fat jar)

	Executable bash/bat script

Usage

Enable the JavaAppPackaging plugin in your build.sbt with

enablePlugins(JavaAppPackaging)

This archetype will use the mainClass setting of sbt (automatically discovers your main class) to generate
bat and bin scripts for your project. In case you have multiple main classes you can point to a specific
class with the following setting:

mainClass in Compile := Some("foo.bar.Main")

In order to generate launch scripts only for specified mainClass, you will need to discard automatically found main classes:

discoveredMainClasses in Compile := Seq()

To create a staging version of your package call

sbt stage

The universal layout produced in your target/universal/stage folder looks like the following:

bin/
 <app_name> <- BASH script
 <app_name>.bat <- cmd.exe script
lib/
 <Your project and dependent jar files here.>

You can add additional files to the project by placing things in src/windows, src/universal or src/linux as
needed. To see if your application runs:

cd target/universal/stage
./bin/<app-name>

This plugin also enables all supported packaging formats as well. Currently all formats are supported by the
java app archetype! For example you can build zips, deb or docker by just enabling JavaAppPackaging.

sbt
create a zip file
> universal:packageBin
create a deb file
> debian:packageBin
publish a docker image to your local registry
> docker:publishLocal

Settings & Tasks

This is a non extensive list of important settings and tasks this plugin provides. All settings
have sensible defaults.

	makeBashScript

	Creates or discovers the bash script used by this project.

	makeBatScript

	Creates or discovers the bat script used by this project.

	bashScriptTemplateLocation

	The location of the bash script template.

	batScriptTemplateLocation

	The location of the bat script template.

	bashScriptConfigLocation

	The location of the bash script on the target system.
Default ${app_home}/../conf/application.ini

	batScriptConfigLocation

	The location of the bat script on the target system.
Default %APP_HOME%\conf\application.ini

	bashScriptExtraDefines

	A list of extra definitions that should be written to the bash file template.

	batScriptExtraDefines

	A list of extra definitions that should be written to the bat file template.

Start script options

The start script provides a few standard options you can pass:

	-h | -help

	Prints script usage

	-v | -verbose

	Prints out more information

	-no-version-check

	Don’t run the java version check

	-jvm-debug <port>

	Turn on JVM debugging, open at the given port

	-java-home <java home>

	Override the default JVM home, it accept variable expansions, e.g.
-java-home ${app_home}/../jre

	-main

	Define a custom main class

To configure the JVM these options are available

	JAVA_OPTS

	environment variable, if unset uses “$java_opts”

	-Dkey=val

	pass -Dkey=val directly to the java runtime

	-J-X

	pass option -X directly to the java runtime (-J is stripped).
E.g. -J-Xmx1024

In order to pass application arguments you need to separate the jvm arguments from the
application arguments with --. For example

./bin/my-app -Dconfig.resource=prod.conf -- -appParam1 -appParam2

Multiple Applications

If you have multiple main classes then the JavaAppPackaging archetype provides you with two different ways of
generating start scripts.

	A start script for each entry point. This is the default behaviour, when no mainClass in Compile is set

	One start script for the defined mainClass in Compile and forwarding scripts for all other main classes.

Note

What does ‘forwarder script’ mean?

Native-packager’s start script provides a -main option to override the main class that should be executed.
A forwarder script only overrides this attribute and forwards all other parameters to the normal start script.

All customization you implemented for the main script will also apply for the forwarder scripts.

Multiple start scripts

No configuration is needed. SBT sets mainClass in Compile automatically to None if multiple main classes are
discovered.

Example:

For two main classes com.example.FooMain and com.example.BarMain sbt stage will generate these scripts:

bin/
 bar-main
 bar-main.bat
 foo-main
 foo-main.bat

Single start script with forwarders

Generates a single start script for the defined main class in mainClass in Compile and forwarding scripts for all
other discoveredMainClasses in Compile. The forwarder scripts call the defined start script and set the -main
parameter to the concrete main class.

The start script name uses the executableScriptName setting for its name. The forwarder scripts use a simplified
version of the class name.

Example:

The build.sbt has an explicit main class set.

name := "my-project"
mainClass in Compile := Some("com.example.FooMain")

For two main classes com.example.FooMain and com.example.BarMain sbt stage will generate these scripts:

bin/
 bar-main
 bar-main.bat
 my-project
 my-project.bat

Now you can package your application as usual, but with multiple start scripts.

A note on script names

When this plugin generates script names from main class names, it tries to generate readable and unique names:

	An heuristic is used to split the fully qualified class names into words:

pkg1.TestClass
pkg2.AnUIMainClass
pkg2.SomeXMLLoader
pkg3.TestClass

becomes

pkg-1.test-class
pkg-2.an-ui-main-class
pkg-2.some-xml-loader
pkg-3.test-class

	Resulted lower-cased names are grouped by the simple class name.

	Names from single-element groups are reduced to their lower-cased simple names.

	Names that would otherwise collide by their simple names are used as is (that is, full names)
with dots replaced by underscores

So the final names will be:

pkg-1_test-class
an-ui-main-class
some-xml-loader
pkg-3_test-class

Please note that in some corner cases this may result in multiple scripts with the same name
in the resulting archive, but it is not expected to happen in normal circumstances.

Customize

	Application and runtime configuration
	Configuration file
	Via build.sbt

	Via Application.ini

	Add code to the start scripts
	BashScript defines

	BatScript defines

	Start script customizations
	Bash and Bat script extra defines

	Overriding Templates (Bash/Bat)

 The application structure is customizable via the standard mappings, which is described in the
Universal Plugin Section.

Application and runtime configuration

There are generally two types of configurations:

	Configuring the JVM and the process

	Configuring the application itself

You have two options to define your runtime and application configurations.

Configuration file

The start scripts provided by the BatStartScriptPlugin and BashStartScriptPlugin can both load an external
configuration file during execution. You can define the configuration file location for both with these two settings.

	bashScriptConfigLocation

	The location of the bash script on the target system.

Default ${app_home}/../conf/application.ini

	batScriptConfigLocation

	The location of the bat script on the target system.

Default %APP_HOME%\conf\application.ini

The configuration path is the path on the target system. This means that native-packager needs to process this path
to create a valid ``universal:mapping``s entry.

	${app_home}/../ is removed

	%APP_HOME% is removed and \ is being replaced with /

This means you can either

	Create a configuration path relative to the application directory (recommended)

	Create an absolute path that has to match your target and build system

Example

// configure two different files for bash and bat
bashScriptConfigLocation := Some("${app_home}/../conf/jvmopts-bash")
batScriptConfigLocation := Some("%APP_HOME%\\conf\\jvmopts-bat")

Now we know how to configure the location of our configuration file. The next step is to learn how to provide content
for the configuration file.

Via build.sbt

You can specify your options via the build.sbt.

javaOptions in Universal ++= Seq(
 // -J params will be added as jvm parameters
 "-J-Xmx64m",
 "-J-Xms64m",

 // others will be added as app parameters
 "-Dproperty=true",
 "-port=8080",

 // you can access any build setting/task here
 s"-version=${version.value}"
)

For the -X settings you need to add a suffix -J so the start script will
recognize these as vm config parameters.

When you use the javaOptions in Universal sbt-native-packager will generate configuration files
if you haven’t set the batScriptConfigLocation and/or bashScriptConfigLocation to None.

Via Application.ini

The second option is to create src/universal/conf/application.ini with the following template

Setting -X directly (-J is stripped)
-J-X
-J-Xmx1024

Add additional jvm parameters
-Dkey=val

Turn on JVM debugging, open at the given port
-jvm-debug <port>

Don't run the java version check
-no-version-check

enabling debug and sending -d as app argument
the '--' prevents app-parameter swallowing when
using a reserved parameter. See #184
-d -- -d

The file will be installed to ${app_home}/conf/application.ini and read from there
by the startscript. You can use # for comments and new lines as you like. This file
currently doesn’t has any variable substitution. We recommend using the build.sbt if
you need any information from your build.

The configuration file for bash scripts takes arguments for the BASH file on each line,
and allows comments which start with the # character. Essentially, this provides
a set of default arguments when calling the script.

By default, any file in the src/universal directory is packaged. This is a convenient
way to include things like licenses, and readmes.

If you don’t like application.ini as a name, you can change this in the build.sbt.
The default configuration looks like this

bashScriptConfigLocation := Some("${app_home}/../conf/application.ini")
batScriptConfigLocation := Some("%APP_HOME%\\conf\\application.ini")

Add code to the start scripts

The second option is to add code to the generated start scripts via these settings.

	bashScriptExtraDefines

	A list of extra definitions that should be written to the bash file template.

	batScriptExtraDefines

	A list of extra definitions that should be written to the bat file template.

BashScript defines

The bash script accepts extra commands via bashScriptExtraDefines. Generally you can add arbitrary
bash commands here, but for configurations you have two methods to add jvm and app parameters.

// add jvm parameter for typesafe config
bashScriptExtraDefines += """addJava "-Dconfig.file=${app_home}/../conf/app.config""""
// add application parameter
bashScriptExtraDefines += """addApp "--port=8080""""

Syntax

	${{template_declares}}

	Will be replaced with a series of declare <var> lines based on the bashScriptDefines key. These variables
are predefined:
* app_mainclass - The main class entry point for the application.
* app_classpath - The complete classpath for the application (in order).

BatScript defines

The Windows batch script accepts extra commands via batScriptExtraDefines. It offers
two methods to add jvm and app parameters using similar syntax to the BASH script.

// add jvm parameter for typesafe config
batScriptExtraDefines += """call :add_java "-Dconfig.file=%APP_HOME%\conf\app.config""""
// add application parameter
batScriptExtraDefines += """call :add_app "--port=8080""""

Syntax

@@APP_ENV_NAME@@
will be replaced with the script friendly name of your package.

@@APP_NAME@@
will be replaced with user friendly name of your package.

@APP_DEFINES@@
will be replaced with a set of variable definitions, like APP_MAIN_CLASS, APP_MAIN_CLASS.

Start script customizations

While the native packager tries to provide robust BASH/BAT scripts for your applications, they may not always be enough.
The native packager provides a mechanism where the template used to create each script can be customized or directly
overridden.

Bash and Bat script extra defines

For the bat and bash script are separated settings available to add arbitrary code to the start script.
See BashScript defines and BatScript defines for details.

The bashScriptExtraDefines sequence allows you to add new lines to the default bash script used to start the
application. This is useful when you need a setting which isn’t mean for the command-line parameter list passed to the
java process. The lines added to bashScriptExtraDefines are placed near the end of the script and have access to a
number of utility bash functions (e.g. addJava, addApp, addResidual, addDebugger). You can add lines to
this script as we did for the Typesafe config file above. For more complex scripts you can also inject a separate file
managed in your source tree or resource directory:

bashScriptExtraDefines ++= IO.readLines(baseDirectory.value / "scripts" / "extra.sh")

This will add the contents of /scripts/extra.sh in the resource directory to the bash script. Note you should always
concatenate lines to bashScriptExtraDefines as other stages in the pipeline may be include lines to the
start-script.

Overriding Templates (Bash/Bat)

Warning

Replacing the default templates should really only be done if:

	There is a bug in one of the script templates you need to workaround

	There is a deficiency in the features of one of the templates you need to fix.

In general, the templates are intended to provide enough utility that customization is only necessary for truly custom
scripts.

In order to override full templates, like the default bash script, you can create a file in
src/templates/bash-template. Alternatively, you can use a different file location by setting
bashScriptTemplateLocation. There are

Similarly the windows BAT template can be overridden by placing a new template in src/templates/bat-template.
You can also use a different file location by setting batScriptTemplateLocation.

Java Server Application Archetype

Hint

Supports only deb and rpm packaging. No support for Windows or macOS

In the Java Application Archetype section we described how to build and customize settings related to an application.
The server archetype adds additional features you may need when running your application as a service on a server.
SBT Native Packager ships with a set of predefined install and uninstall scripts for various platforms and service
managers.

Features

The JavaServerAppPackaging archetype depends on the Java Application Archetype and adds the following features

	daemon user/group support

	default mappings for server applications
* /var/log/<pkg> is symlinked from <install>/logs
* /var/run/<pkg> owned by daemonUser

	etc-default support

Usage

enablePlugins(JavaServerAppPackaging)

Everything else works the same way as the Java Application Archetype.

Tip

If you want your application to be registered as a service enable a Systemloaders plugin.

Settings & Tasks

This is a non extensive list of important settings and tasks this plugin provides. All settings
have sensible defaults.

	daemonUser

	User to start application daemon

	daemonUserUid

	UID of daemonUser

	daemonGroup

	Group to place daemonUser to

	daemonGroupGid

	GID of daemonGroup

	daemonShell

	Shell provided for the daemon user

	daemonStdoutLogFile

	Filename stdout/stderr of application daemon. Now it’s supported only in SystemV

Default Mappings

The java server archetype creates a default package structure with the following access rights. <package> is a
placeholder for your actual application name. By default this is normalizedName.

	Folder

	User

	Permissions

	Purpose

	/usr/share/<package>

	root

	755 / (655)

	static, non-changeable files

	/etc/default/<package>

	root

	644

	default config file

	/etc/<package>

	root

	644

	config folder -> link to /usr/share/<package-name>/conf

	/var/run/<package>

	daemon

	644

	if the application generates a pid on its own

	/var/log/<package>

	daemon

	644

	log folder -> symlinked from /usr/share/<package>/log

You can read more on best practices on wikipedia filesystem hierarchy [http://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard], debian policies [https://www.debian.org/doc/debian-policy/ch-files.html] and in
this native packager discussion [https://github.com/sbt/sbt-native-packager/pull/174].

If you want to change something in this predefined structure read more about it in
the linux section.

Customize

	Application Configuration

	Systemloader Configuration

	Package Lifecycle Configuration

	Example Configurations

Application Configuration

After creating a package, the very next thing needed, usually, is the ability for users/ops to customize the application once it’s deployed. Let’s add some configuration to the newly deployed application.

There are generally two types of configurations:

	Configuring the JVM and the process

	Configuring the Application itself.

The server archetype provides you with a special feature to configure your application
with a single file outside of customizing the bash or bat script for applications.
As this file is OS dependent, each OS gets section.

Linux Configuration

There are different ways described in Customizing the Application
and can be used the same way.

The server archetype adds an additional way with an etc-default file placed
in src/templates, which currently only works for SystemV and
systemd. The file gets sourced before the actual startscript is executed.
The file will be installed to /etc/default/<normalizedName>

Example /etc/default/<normalizedName> for SystemV:

Available replacements
--
${{author}} package author
${{descr}} package description
${{exec}} startup script name
${{chdir}} app directory
${{retries}} retries for startup
${{retryTimeout}} retry timeout
${{app_name}} normalized app name
${{daemon_user}} daemon user

Setting JAVA_OPTS

JAVA_OPTS="-Dpidfile.path=/var/run/${{app_name}}/play.pid $JAVA_OPTS"

For rpm/systemv you need to set the PIDFILE env variable as well
PIDFILE="/var/run/${{app_name}}/play.pid"

export env vars for 3rd party libs

COMPANY_API_KEY=123abc
export COMPANY_API_KEY

Daemon User and Group

Customize the daemon user and group for your application with the following settings.

// a different daemon user
daemonUser in Linux := "my-user"
// if there is an existing one you can specify the uid
daemonUserUid in Linux := Some("123")
// a different daemon group
daemonGroup in Linux := "my-group"
// if the group already exists you can specify the uid
daemonGroupGid in Linux := Some("1001")

Environment variables

The usual JAVA_OPTS can be used to override settings. This is a nice way to test
different jvm settings with just restarting the jvm.

Windows Configuration

Support planned.

Systemloader Configuration

See the Systemloaders documentation on how to add a systemloader (e.g. SystemV, Systemd or Upstart) to your
package.

Package Lifecycle Configuration

Some scripts are covered in the standard application type. Read more on Java Application Customization.
For the java_server package lifecycle scripts are customized to provide the following additional features

	Chowning directories and files correctly (if necessary)

	Create/Delete users and groups according to your mapping

	Register application at your init system

For this purpose sbt-native-packager ships with some predefined templates. These can be
overridden with different techniques, depending on the packaging system.

Partially Replace Template Functionality

Most sbt-native-packager scripts are broken up into partial templates in the resources directory [https://github.com/sbt/sbt-native-packager/tree/master/src/main/resources/com/typesafe/sbt/packager].
You can override these default template snippets by adding to the linuxScriptReplacements map. As
an example you can change the loader-functions which starts/stop services based on a certain `ServerLoader`:

linuxScriptReplacements += "loader-functions" -> TemplateWriter.generateScript(getClass.getResource("/custom-loader-functions"), Nil)

The custom-loader-functions file must declare the startService() and stopService() functions used in various
service management scripts.

RPM Scriptlets

RPM puts all scripts into one file. To override or append settings to your
scriptlets use maintainerScripts in Rpm or these ``RpmConstants._``s:

	Pre

	%pre scriptlet

	Post

	%post scriptlet

	Pretrans

	%pretrans scriptlet

	Posttrans

	%posttrans scriptlet

	Preun

	“%preun scriptlet”

	Postun

	%postun scriptlet

	Verifyscript

	%verifyscript scriptlet

If you want to have your files separated from the build definition use the
default location for rpm scriptlets. To override default templates in a RPM
build put the new scriptlets in the rpmScriptletsDirectory (by default src/rpm/scriptlets).

	RpmConstants.Scriptlets

	By default to src/rpm/scriptlets. Place your templates here.

Available templates are

post-rpm
pre-rpm
postun-rpm
preun-rpm

The corresponding maintainer file names are:

pretrans
post
pre
postun
preun
verifyscript
posttrans

Override Postinst scriptlet

By default the post-rpm template only starts the service, but doesn’t register it.

service ${{app_name}} start

For CentOS we can do

chkconfig ${{app_name}} defaults
service ${{app_name}} start || echo "${{app_name}} could not be started. Try manually with service ${{app_name}} start"

For RHEL

update-rc.d ${{app_name}} defaults
service ${{app_name}} start || echo "${{app_name}} could not be started. Try manually with service ${{app_name}} start"

Debian Control Scripts

To override default templates in a Debian build put the new control files in the
debianControlScriptsDirectory (by default src/debian/DEBIAN).

	debianControlScriptsDirectory

	By default to src/debian/DEBIAN. Place your templates here.

	debianMakePreinstScript

	creates or discovers the preinst script used by this project.

	debianMakePrermScript

	creates or discovers the prerm script used by this project.

	debianMakePostinstScript

	creates or discovers the postinst script used by this project.

	debianMakePostrmScript

	creates or discovers the postrm script used by this project.

Available templates are

postinst
preinst
postun
preun

Linux Replacements

This is a list of values you can access in your templates

${{author}}
${{descr}}
${{exec}}
${{chdir}}
${{retries}}
${{retryTimeout}}
${{app_name}}
${{daemon_user}}
${{daemon_group}}

Attention

Every replacement corresponds to a single setting or task. For the linuxScriptReplacements you need
to override the setting/task in the in Linux scope. For example

daemonUser in Linux := "new-user"

overrides the daemon_user in the linuxScriptReplacements.

Example Configurations

A list of very small configuration settings can be found at sbt-native-packager-examples [https://github.com/muuki88/sbt-native-packager-examples]

Systemloaders

SBT native packager provides support for different systemloaders in order to register your application as a service on
your target system, start it automatically and provide systemloader specific configuration.

Tip

You can use systemloaders with the Java Application Archetype or the Java Server Application Archetype!

Overview

There is a generic SystemloaderPlugin which configures default settings and requires necessary plugins. It gets
triggered automatically, when you enable a specific systemloader plugin. If you want to implement your own loader,
you should require the SystemloaderPlugin.

General Settings

	serverLoading

	Loading system to be used for application start script (SystemV, Upstart, Systemd).
This setting can be used to trigger systemloader specific behaviour in your build.

	serviceAutostart

	Determines if service will be automatically started after installation. The default value is true.

	startRunlevels

	Sequence of runlevels on which application will start up

	stopRunlevels

	Sequence of runlevels on which application will stop

	requiredStartFacilities

	Names of system services that should be provided at application start

	requiredStopFacilities

	Names of system services that should be provided at application stop

	killTimeout

	Timeout before sigkill on stop (after term)

	termTimeout

	Timeout before sigterm on stop

	retries

	Number of retries to start service”

	retryTimeout

	Timeout between retries in seconds

SystemV

Native packager provides different SysV scripts for rpm (CentOS, RHEL, Fedora) and debian (Debian, Ubuntu)
package based systems. Enable SystemV with:

enablePlugins(SystemVPlugin)

The Java Server Application Archetype provides a daemonStdoutLogFile setting, that you can use to redirect the systemV
output into a file.

Systemd

In order to enable Systemd add this plugin:

enablePlugins(SystemdPlugin)

Settings

	systemdSuccessExitStatus

	Takes a list of exit status definitions that when returned by the main service process will be considered successful
termination, in addition to the normal successful exit code 0 and the signals SIGHUP, SIGINT,
SIGTERM, and SIGPIPE. Exit status definitions can either be numeric exit codes or termination signal names.

	systemdIsServiceFileConfig

	Should file app_name.service be marked as config. Default is true. If it is set to true, file will be
marked %config in rpm package for example.

Upstart

SystemV alternative developed by Ubuntu [http://upstart.ubuntu.com/]. Native packager adds support for rpm as well,
but we recommend using Systemd if possible.

enablePlugins(UpstartPlugin)

As a side note Fedora/RHEL/Centos family of linux specifies Default requiretty in its /etc/sudoers
file. This prevents the default Upstart script from working correctly as it uses sudo to run the application
as the daemonUser . Simply disable requiretty to use Upstart or modify the Upstart template.

Customization

Native packager provides general settings to customize the created systemloader scripts.

Start Script Location

In order to change the location of the systemloader script/config file you need to adjust the
defaultLinuxStartScriptLocation like this:

defaultLinuxStartScriptLocation in Debian := "/lib/systemd/system"

You may need to change these paths according to your distribution. References are

	Ubuntu systemd documentation [https://wiki.ubuntu.com/systemd]

	Debian systemd documentation [https://wiki.debian.org/Teams/pkg-systemd/Packaging]

	RHEL systemd documentation [https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/chap-Managing_Services_with_systemd.html]

Customize Start Script

Sbt Native Packager leverages templating to customize various start/stop scripts and pre/post install tasks.
As an example, to alter the loader-functions which manage the specific start and stop process commands
for SystemLoaders you can to the linuxScriptReplacements map:

import com.typesafe.sbt.packager.archetypes.TemplateWriter

linuxScriptReplacements += {
 val functions = sourceDirectory.value / "templates" / "custom-loader-functions"
 // Nil == replacements. If you want to replace stuff in your script put them in this Seq[(String,String)]
 "loader-functions" -> TemplateWriter.generateScript(functions.toURL, Nil)
}

which will add the following resource file to use start/stop instead of initctl in the post install script:

startService() {
 app_name=$1
 start $app_name
}

stopService() {
 app_name=$1
 stop $app_name
}

The debian and redhat pages have further information on overriding
distribution specific actions.

Override Start Script

It’s also possible to override the entire script/configuration for your service manager.
Create a file src/templates/systemloader/$loader/$template and it will be used instead.

Possible values:

	$loader - upstart, systemv or systemd

	$template -

	systemv - loader-functions, start-debian-template, or start-rpm-template

	systemd - loader-functions or start-template

	upstart - loader-functions or start-template

Syntax

You can use ${{variable_name}} to reference variables when writing your script. The default set of variables is:

	descr - The description of the server.

	author - The configured author name.

	exec - The script/binary to execute when starting the server

	chdir - The working directory for the server.

	retries - The number of times to retry starting the server.

	retryTimeout - The amount of time to wait before trying to run the server.

	app_name - The name of the application (linux friendly)

	app_main_class - The main class / entry point of the application.

	app_classpath - The (ordered) classpath of the application.

	daemon_user - The user that the server should run as.

	daemon_log_file - Absolute path to daemon log file.

Configuration Archetypes

This is a small collection of additional archetypes that provide smaller enhancements.

AshScript Plugin

This class is an alternate to JavaAppPackaging designed to support the ash shell. Java Application Archetype
generates bash-specific code that is not compatible with ash, a very stripped-down, lightweight shell
used by popular micro base Docker images like BusyBox. The AshScriptPlugin will generate simple
ash-compatible output.

enablePlugins(AshScriptPlugin)

ClasspathJar & LauncherJar Plugin

See the Dealing with long classpaths section for usage of these plugins.

Jlink Plugin

This plugin builds on Java’s jlink [https://docs.oracle.com/en/java/javase/11/tools/jlink.html] tool to embed a JVM image (a stripped-down JRE)
into your package. It produces a JVM image containing only the modules that are referenced
from the dependency classpath.

Note: Current implementation only detects the platform modules (that is, the ones present in
the JDK used to build the image). Modular JARs and directories are packaged as specified
by the UniversalPlugin.

enablePlugins(JlinkPlugin)

The plugin requires Oracle JDK 11 or OpenJDK 11. Although jlink and jdeps are also
a part of the older JDK versions, those lack some of the newer features, which was not
addressed in the current plugin version.

This plugin must be run on the platform of the target installer. The tooling does not
provide a means of creating, say, Windows installers on MacOS, or MacOS on Linux, etc.

The plugin analyzes the dependencies between packages using jdeps, and raises an error in case of a missing dependency (e.g. for a provided transitive dependency). The missing dependencies can be suppressed on a case-by-case basis (e.g. if you are sure the missing dependency is properly handled):

jlinkIgnoreMissingDependency := JlinkIgnore.only(
 "foo.bar" -> "bar.baz",
 "foo.bar" -> "bar.qux"
)

For large projects with a lot of dependencies this can get unwieldy. You can use a more flexible ignore strategy:

jlinkIgnoreMissingDependency := JlinkIgnore.byPackagePrefix(
 "foo.bar" -> "bar"
)

Otherwise you may opt out of the check altogether (which is not recommended):

jlinkIgnoreMissingDependency := JlinkIgnore.everything

Known issues

Adding some library dependencies can lead to errors like this:

java.lang.module.FindException: Module paranamer not found, required by com.fasterxml.jackson.module.paranamer

This is often caused by depending on automatic modules. In the example above, com.faterxml.jackson.module.paranamer is an explicit module (as in, it is a JAR with a module descriptor) that defines a dependency on the paranamer module. However, there is no explicit paranamer module - instead, Jackson expects us to use the paranamer JAR file as an automatic module. To do this, the JAR has to be on the module path. At the moment JlinkPlugin does not put it there automatically, so we have to do that ourselves:

jlinkModulePath := {
 // Get the full classpath with all the resolved dependencies.
 fullClasspath.in(jlinkBuildImage).value
 // Find the ones that have `paranamer` as their names.
 .filter { item =>
 item.get(moduleID.key).exists { modId =>
 modId.name == "paranamer"
 }
 }
 // Get raw `File` objects.
 .map(_.data)
}

Further reading

For further details on the capabilities of jlink, see the
jlink [https://docs.oracle.com/en/java/javase/11/tools/jlink.html] and
jdeps [https://docs.oracle.com/en/java/javase/11/tools/jdeps.html] references.
(Note: only some of the possible settings are exposed through this plugin. Please submit a
Github [https://github.com/sbt/sbt-native-packager/issues] issue or pull request if something specific is desired.)

Archetype Cheatsheet

This is a set FAQ composed on a single page.

Path Configurations

This section describes where and how to configure different kind of paths settings like

	what is the installation location of my package

	where is the log directory created

	what is the name of my start script

Quick Reference Table

This table gives you a quick overview of the setting and the scope you should use.
Paths which do not begin with a / are relative to the universal directory.
The scopes are ordered from general to specific, so a more specific one will override
the generic one. Only the listed scopes for a setting a relevant. Any changes in other
scopes will have no effect!

	output path

	scopes

	archetype

	comment

	lib

	all

	JavaApp

	

	conf

	all

	JavaApp

	

	bin/<executableScriptName>

	Global

	JavaApp

	

	bin/<executableScriptName>.bat

	Global

	JavaApp

	

	bin/<executableScriptName>

	Global

	
	Entrypoint DockerPlugin

	<defaultLinuxInstallationLocation>/<packageName>

	Linux, Debian, Rpm

	JavaApp

	

	<defaultLinuxLogLocation>/<packageName>

	Linux

	JavaServerApplication

	

	logs

	Linux

	JavaServerApplication

	Symlink

	/etc/default/<packageName>

	Linux

	JavaServerApplication

	

	/var/run/<packageName>

	Linux

	JavaServerApplication

	

	/etc/init.d/<packageName>

	Linux, Debian, Rpm

	JavaServerApplication

	For SystemV

	/etc/init/<packageName>

	Linux, Debian, Rpm

	JavaServerApplication

	For Upstart

	/usr/lib/systemd/system/<packageName>.service

	Linux, Debian, Rpm

	JavaServerApplication

	For Systemd

	<defaultLinuxInstallLocation>

	Docker

	
	Installation path inside the container

Settings

These settings configure the path behaviour

	name

	Use for the normal jar generation process

	packageName

	Defaults to normalizedName. Can be override in different scopes

	executableScriptName

	Defaults to normalizedName. Sets the name of the executable starter script

	defaultLinuxInstallLocation

	Defaults to /usr/share/. Used to determine the installation path for for linux packages (rpm, debian)

	defaultLinuxLogsLocation

	Defaults to /var/log/. Used to determine the log path for linux packages (rpm, debian).

JVM Options

JVM options can be added via different mechanisms. It depends on your use case which is most suitable.
The available options are

	Adding via bashScriptExtraDefines and batScriptExtraDefines

	Providing a application.ini (JavaApp) or etc-default (JavaServer) file

	Set javaOptions in Universal (JavaApp) or javaOptions in Linux (JavaServer, linux only)

Warning

If you want to change the location of your config keep in mind that the path in
bashScriptConfigLocation should either
- be absolute (e.g. /etc/etc-default/my-config<) or
- starting with ${app_home}/../ (e.g. ${app_home}/../conf/application.ini)

Extra Defines

With this approach you are altering the bash/bat script that gets executed.
Your configuration is literally woven into it, so it applies to any archetype
using this bashscript (app, akka app, server, …).

For a bash script this could look like this.

bashScriptExtraDefines += """addJava "-Dconfig.file=${app_home}/../conf/app.config""""

// or more. -X options don't need to be prefixed with -J
bashScriptExtraDefines ++= Seq(
 """addJava "-Xms1024m"""",
 """addJava "-Xmx2048m""""
)

For more information take a look at the according documentation.

File - application.ini or etc-default

Another approach would be to provide a file that is read by the bash script during execution.

Java App

Create a file src/universal/conf/application.ini (gets automatically added to the package mappings)
and add this to your build.sbt inject the config location into the bashscript.

bashScriptConfigLocation := Some("${app_home}/../conf/application.ini")

Java Server

See Server App Config - src/templates/etc-default-{systemv,systemd}

Setting - javaOptions

The last option to set your java options is using javaOptions in Universal (JavaApp and Server).
This will generate files according to your archetype. The following table gives you an overview what
you can use and how things will be behave if you mix different options. Options lower in the table
are more specific and will thus override the any previous settings (if allowed).

	javaOpts

	Scope

	bashScriptConfigLocation

	Archetype

	mappings

	comment

	Nil

	Universal

	None

	JavaApp

	
	No jvm options

	Nil

	Universal

	Some(appIniLocation)

	JavaApp

	
	User provides the application.ini file in src/universal/conf/application.ini

	opts

	Universal

	Some(_)

	JavaApp

	added

	creates application.ini but leaves bashScriptConfigLocation unchanged

	opts

	Universal

	None

	JavaApp

	added

	creates application.ini and sets bashScriptConfigLocation. If src/universal/conf/application.ini is present it will be overridden

	Nil

	Linux

	None

	JavaServer

	added

	creates etc-default and sets bashScriptConfigLocation

	opts

	Linux

	None

	JavaServer

	added

	creates etc-default, appends javaOptions in Linux and sets bashScriptConfigLocation

	opts

	Linux

	Some(_)

	JavaServer

	added

	creates etc-default, appends javaOptions in Linux and overrides bashScriptConfigLocation

Overriding Templates

You can override the default template used to generate any of the scripts in
any archetype. Listed below are the overridable files and variables that
you can use when generating scripts.

Bat Script - src/templates/bat-template

Creating a file here will override the default template used to
generate the .bat script for windows distributions.

Syntax

@@APP_ENV_NAME@@ - will be replaced with the script friendly name of your package.

@@APP_NAME@@ - will be replaced with user friendly name of your package.

	@APP_DEFINES@@ - will be replaced with a set of variable definitions, like

	APP_MAIN_CLASS, APP_MAIN_CLASS.

You can define additional variable definitions using batScriptExtraDefines.

Bash Script - src/templates/bash-template

Creating a file here will override the default template used to
generate the BASH start script found in bin/<application> in the
universal distribution

Syntax

${{template_declares}} - Will be replaced with a series of declare <var>
lines based on the bashScriptDefines key. You can add more defines to
the bashScriptExtraDefines that will be used in addition to the default set:

	app_mainclass - The main class entry point for the application.

	app_classpath - The complete classpath for the application (in order).

Service Manager Templates

It’s also possible to override the entire script/configuration templates for your service manager.
These templates vary by loader type. Create a file src/templates/systemloader/$loader/$template
and it will be used instead.

Possible values:

	$loader - upstart, systemv or systemd

	$template -
* systemv - loader-functions, start-debian-template, or start-rpm-template
* systemd - loader-functions or start-template
* upstart - loader-functions or start-template

Syntax

You can use ${{variable_name}} to reference variables when writing your script. The default set of variables is:

	author - The name of the author; defined by maintainer in Linux.

	descr - The short description of the service; defined by packageSummary in Linux.

	exec - The script/binary to execute when starting the service; defined by executableScriptName in Linux.

	chdir - The working directory for the service; defined by defaultLinuxInstallLocation/(packageName in Linux).

	retries - The number of times to retry starting the server; defined to be the constant 0.

	retryTimeout - The amount of time to wait before trying to run the server; defined to be the constant 60.

	app_name - The name of the application (linux friendly); defined by packageName in Linux.

	version - The software version; defined by version.

	daemon_user - The user that the service should run as; defined by daemonUser in Linux.

	daemon_user_uid - The user ID of the user that the service should run as; defined by daemonUserUid in Linux.

	daemon_group - The group of the user that the service should run as; defined by daemonGroup in Linux.

	daemon_group_gid - The group ID of the group of the user that the service should run as; defined by daemonGroupGid in Linux.

	daemon_shell - The shell of the user that the service should run as; defined by daemonShell in Linux.

	term_timeout - The timeout for the service to respond to a TERM signal; defined by termTimeout in Linux, defaults to 60.

	kill_timeout - The timeout for the service to respond to a KILL signal; defined by killTimeout in Linux, defaults to 30.

	start_facilities - Intended for the Required-Start: line in the INIT INFO block. Its value is automatically generated with respect to the chosen system loader.

	stop_facilities - Intended for the Required-Stop: line in the INIT INFO block. Its value is automatically generated with respect to the chosen system loader.

	start_runlevels - Intended for the Default-Start: line in the INIT INFO block. Its value is automatically generated with respect to the chosen system loader.

	stop_runlevels - Intended for the Default-Stop: line in the INIT INFO block. Its value is automatically generated with respect to the chosen system loader.

Server App Config - src/templates/etc-default-{systemv,systemd}

Creating a file here will override the /etc/default/<application> template
for the corresponding loader.

The file /etc/default/<application> is used as follows given the loader:

	systemv: sourced as a bourne script.

	systemd: used as an EnvironmentFile directive parameter (see man systemd.exec, section EnvironmentFile for a
description of the expected file format).

	upstart: presently ignored.

If you’re only overriding JAVA_OPTS, your environment file could be compatible
with both systemv and systemd loaders; if such is the case, you can specify a
single file at src/templates/etc-default which will serve as an override for
all loaders.

Recipes

This section provides recipes for common configurations. If you can’t find what you are looking for, take a look at
sbt-native-packager examples [https://github.com/muuki88/sbt-native-packager-examples] github page.

	Custom Package Formats

	Dealing with long classpaths

	Play 2 Packaging

	Deployment

	Scala JS packaging

	Build the same package with different configs

	Embedding JVM in Universal

	Setting the umask for your process

Custom Package Formats

This section provides an overview of different packaging flavors.

SBT Assembly

Main Goal

Create a fat-jar with sbt-assembly in order to deliver a single,

self-containing jar as a package instead of the default lib/ structure

First add the sbt-assembly plugin to your plugins.sbt file.

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.11.2")

The next step is to remove all the jar mappings from the normal mappings and only add the
assembly jar. In this example we’ll set the assembly jar name ourself, so we know exactly
what the output should look like. Finally we change the scriptClasspath so it only
contains the assembled jar. This is what the final build.sbt should contain:

import AssemblyKeys._

// the assembly settings
assemblySettings

// we specify the name for our fat jar
jarName in assembly := "assembly-project.jar"

// using the java server for this application. java_application is fine, too
packageArchetype.java_server

// removes all jar mappings in universal and appends the fat jar
mappings in Universal := {
 // universalMappings: Seq[(File,String)]
 val universalMappings = (mappings in Universal).value
 val fatJar = (assembly in Compile).value
 // removing means filtering
 val filtered = universalMappings filter {
 case (file, name) => ! name.endsWith(".jar")
 }
 // add the fat jar
 filtered :+ (fatJar -> ("lib/" + fatJar.getName))
}

// the bash scripts classpath only needs the fat jar
scriptClasspath := Seq((jarName in assembly).value)

Proguard

Main Goal

Create a package that contains a single fat-jar that has been shrunken / optimized / obfuscated with proguard [http://proguard.sourceforge.net/].

First add the sbt-proguard [https://github.com/sbt/sbt-proguard] plugin to
the plugins.sbt file:

addSbtPlugin("com.lightbend.sbt" % "sbt-proguard" % "0.3.0")

Then configure the proguard options in build.sbt:

enablePlugins(SbtProguard)

// to configure proguard for scala, see
// http://proguard.sourceforge.net/manual/examples.html#scala
proguardOptions in Proguard ++= Seq(
 "-dontoptimize",
 "-dontnote",
 "-dontwarn",
 "-ignorewarnings",
 // ...
)

// specify the entry point for a standalone app
proguardOptions in Proguard += ProguardOptions.keepMain("com.example.Main")

proguardVersion in Proguard := "6.0.3"

// filter out jar files from the list of generated files, while
// keeping non-jar output such as generated launch scripts
mappings in Universal := (mappings in Universal).value.
 filter {
 case (file, name) => !name.endsWith(".jar")
 }

// ... and then append the jar file emitted from the proguard task to
// the file list
mappings in Universal ++= (proguard in Proguard).
 value.map(jar => jar -> ("lib/" + jar.getName))

// point the classpath to the output from the proguard task
scriptClasspath := (proguard in Proguard).value.map(jar => jar.getName)

Now when you package your project using a command such as sbt universal:packageZipTarball,
it will include fat jar that has been created by proguard rather than the normal
output in /lib.

Multi Module Builds

Main Goal

Aggregate multiple projects into one native package

If you want to aggregate different projects in a multi module build to a single package,
you can specify everything in a single build.sbt

import NativePackagerKeys._

name := "mukis-fullstack"

// used like the groupId in maven
organization in ThisBuild := "de.mukis"

// all sub projects have the same version
version in ThisBuild := "1.0"

scalaVersion in ThisBuild := "2.11.2"

// common dependencies
libraryDependencies in ThisBuild ++= Seq(
 "com.typesafe" % "config" % "1.2.0"
)

// this is the root project, aggregating all sub projects
lazy val root = Project(
 id = "root",
 base = file("."),
 // configure your native packaging settings here
 settings = packageArchetype.java_server++ Seq(
 maintainer := "John Smith <john.smith@example.com>",
 packageDescription := "Fullstack Application",
 packageSummary := "Fullstack Application",
 // entrypoint
 mainClass in Compile := Some("de.mukis.frontend.ProductionServer")
),
 // always run all commands on each sub project
 aggregate = Seq(frontend, backend, api)
) dependsOn(frontend, backend, api) // this does the actual aggregation

// --------- Project Frontend ------------------
lazy val frontend = Project(
 id = "frontend",
 base = file("frontend")
) dependsOn(api)

// --------- Project Backend ----------------
lazy val backend = Project(
 id = "backend",
 base = file("backend")
) dependsOn(api)

// --------- Project API ------------------
lazy val api = Project(
 id = "api",
 base = file("api")
)

Custom Packaging Format

Main Goal

Use native packager to define your own custom packaging format

and reuse stuff you already like

The very core principle of native packager are the mappings. They are a sequence
of File -> String tuples, that map a file on your system to a location on your install
location.

Defining a custom mapping format is basically transforming these mappings into the format
of you choice. To do so, we recommend the following steps

	Create a new configuration scope for you packaging type

	Define a packageBin task in your new scope that transforms the mappings into a package

The following examples demonstrates how to create a simple text format, which lists all your
mappings inside a package format. A minimal build.sbt would look like this

import NativePackagerKeys._

val TxtFormat = config("txtFormat")

val root = project.in(file("."))
 // adding your custom configuration scope
 .configs(TxtFormat)
 .settings(packageArchetype.java_server:_*)
 .settings(
 name := "mukis-custom-package",
 version := "1.0",
 mainClass in Compile := Some("de.mukis.ConfigApp"),
 maintainer in Linux := "Nepomuk Seiler <nepomuk.seiler@mukis.de>",
 packageSummary in Linux := "Custom application configuration",
 packageDescription := "Custom application configuration",
 // defining your custom configuration
 packageBin in TxtFormat := {
 val fileMappings = (mappings in Universal).value
 val output = target.value / s"${packageName.value}.txt"
 // create the is with the mappings. Note this is not the ISO format -.-
 IO.write(output, "# Filemappings\n")
 // append all mappings to the list
 fileMappings foreach {
 case (file, name) => IO.append(output, s"${file.getAbsolutePath}\t$name${IO.Newline}")
 }
 output
 }
)

To create your new “packageFormat” just run

txtFormat:packageBin

If you want to read more about sbt configurations:

	sbt tasks [http://www.scala-sbt.org/0.13/docs/Tasks.html]

	sbt configurations [http://www.scala-sbt.org/0.13.5/docs/Detailed-Topics/Testing.html#additional-test-configurations-with-shared-sources]

	custom configuration [http://stackoverflow.com/questions/18789477/define-custom-configuration-in-sbt]

Dealing with long classpaths

By default, when the native packager generates a script for starting your application, it will generate an invocation
of java that passes every library on the classpath to the classpath argument, -cp. If you have a lot of
dependencies, this may result in a very long command being executed, which, aside from being aesthetically unpleasing
and difficult to work with when using tools like ps, causes problems on some platforms, notably Windows, that have
limits to how long commands can be.

There are a few ways you can work around this in the native packager.

Generate a launcher jar

The native packager includes a plugin that allows generating a launcher jar. This launcher jar will contain no classes,
but will have your projects main class and classpath in its manifest. The script that sbt then generates executes this
jar like so:

java -jar myproject-launcher.jar

To enable the launcher jar, enable the LauncherJarPlugin:

enablePlugins(LauncherJarPlugin)

Generate a classpath jar

The classpath jar is very similar to the launcher jar, in that it also has the classpath on its manifest, but it does
not include the main class in its manifest, and so executed by the start script by invoking:

java -cp myproject-classpath.jar some.Main

To enable the classpath jar:

enablePlugins(ClasspathJarPlugin)

Configure a wildcard classpath

JDK 6 and above supports configuring the classpath using wildcards. To enable this, simply override the
scriptClasspath task to only contain *, for example:

scriptClasspath := Seq("*")

One downside of this approach is that the classpath ordering will no longer match the classpath ordering that sbt uses.

Play 2 Packaging

Although Play 2 supports Sbt Native Packager, it requires some additional steps to successfully package and run your
application.

Tip

there are also two sections in the play documentation that describe deploying and configuring:

	play deploying [https://playframework.com/documentation/latest/Deploying]

	play prod configuration [https://playframework.com/documentation/latest/ProductionConfiguration]

Build Configuration

Depending on whether you want to package your application as a deb-package or
as an rpm-package, you have to setup your build configuration accordingly.
Please, refer to Debian Plugin and Rpm Plugin
pages for additional information.

Note that Upstart is not supported by all available operation systems and may not always work as expected.
You can always fallback to the SystemV service manager instead.
For more information on service managers please refer to Java Server Application Archetype page.

Application Configuration

In order to run your application in production you need to provide it with at least:

	Location where it can store its pidfile

	Production configuration

One way to provide this information is to append the following content in your build definition:

javaOptions in Universal ++= Seq(
 // JVM memory tuning
 "-J-Xmx1024m",
 "-J-Xms512m",

 // Since play uses separate pidfile we have to provide it with a proper path
 // name of the pid file must be play.pid
 s"-Dpidfile.path=/var/run/${packageName.value}/play.pid",

 // alternative, you can remove the PID file
 // s"-Dpidfile.path=/dev/null",

 // Use separate configuration file for production environment
 s"-Dconfig.file=/usr/share/${packageName.value}/conf/production.conf",

 // Use separate logger configuration file for production environment
 s"-Dlogger.file=/usr/share/${packageName.value}/conf/production-logger.xml",

 // You may also want to include this setting if you use play evolutions
 "-DapplyEvolutions.default=true"
)

This way you should either store your production configuration under ${{path_to_app_name}}/conf/production.conf
or put it under /usr/share/${{app_name}}/conf/production.conf by hand or using some configuration management system.

Warning

Your pid file must be called play.pid

SystemV

If you use a system using SystemV start script make sure to provide
a etc-default in src/templates and set the PIDFILE environment variable.

Setting JAVA_OPTS

you can use this instead of the application.ini as well
JAVA_OPTS="-Dpidfile.path=/var/run/${{app_name}}/play.pid $JAVA_OPTS"

For rpm/systemv you need to set the PIDFILE env variable as well
PIDFILE="/var/run/${{app_name}}/play.pid"

See customize section for Java Server Application Archetype for more information on application.ini and etc-default
template.

Deployment

This page shows you how to configure your build to deploy your build universal(zip, tgz, txz), rpm, debian or msi
packages. For information on docker, please take a look at the docker page.

Note

The deployment settings only add artifacts to your publish task. Native packager doesn’t provide any
functionality for publishing to native repositories.

Setup publish Task

You need a working publish task in order to use the following configurations.
A good starting point is the sbt publish documentation [http://www.scala-sbt.org/0.13/docs/Publishing.html]. You should have something
like this in your build.sbt

publishTo := {
 val nexus = "https://oss.sonatype.org/"
 if (version.value.trim.endsWith("SNAPSHOT"))
 Some("snapshots" at nexus + "content/repositories/snapshots")
 else
 Some("releases" at nexus + "service/local/staging/deploy/maven2")
}

For an automatised build process are other plugins like the sbt release plugin [https://github.com/sbt/sbt-release].

Default Deployment

The easiest way is to add UniversalDeployPlugin to your build.sbt

enablePlugins(JavaServerAppPackaging, UniversalDeployPlugin)

You are now able to publish your packaged application in both tgz and zip formats with:

	universal:publish

	Publish the zip (or tgz/txz depending on the configuration. Default is to publish zip along with tgz) package

Custom Deployments

When using other package formats we need to explicitly configure the
deployment setup to a more specific one.

RPM

Your build.sbt should contain:

enablePlugins(RpmPlugin, RpmDeployPlugin)

This will make possible to push the RPM with:

sbt rpm:publish

Debian

Enabled with:

enable(DebianPlugin, DebianDeployPlugin)

that will make possible to publish a deb package with:

sbt deb:publish

Windows

If using an msi packaging you need to enable:

enable(WindowsPlugin, WindowsDeployPlugin)

Then, pushing the package is

sbt windows:publish

Custom Configurations

You could configure only what you need as well.

Debian

makeDeploymentSettings(Debian, packageBin in Debian, "deb")

//if you want a changes file as well
makeDeploymentSettings(Debian, genChanges in Debian, "changes")

RPM

makeDeploymentSettings(Rpm, packageBin in Rpm, "rpm")

Windows

makeDeploymentSettings(Windows, packageBin in Windows, "msi")

Universal

// zip
makeDeploymentSettings(Universal, packageBin in Universal, "zip")

makeDeploymentSettings(UniversalDocs, packageBin in UniversalDocs, "zip")

// additional tgz
addPackage(Universal, packageZipTarball in Universal, "tgz")

// additional txz
addPackage(UniversalDocs, packageXzTarball in UniversalDocs, "txz")

Scala JS packaging

Warning

This is no official scala js doc, but created from the native-packager community.
See issue-699 [https://github.com/sbt/sbt-native-packager/issues/699].

Package webjars and scalajs resources

In order to package all assets correctly, add this to your project

(managedClasspath in Runtime) += (packageBin in previewJVM in Assets).value

Build the same package with different configs

If you want to build your application with different settings, e.g. for test, staging and production, then you
have three ways to do this.

Tip

All examples are shown in a simple build.sbt. We recommend using AutoPlugins to encapsulate certain aspects
of your build.

All examples can also be found in the native-packager examples [https://github.com/muuki88/sbt-native-packager-examples],

SBT sub modules

The main idea is to create a submodule per configuration. We start with a simple project build.sbt.

name := "my-app"
enablePlugins(JavaAppPackaging)

In the end we want to create three different packages (test, stage, prod) with the respective configurations.
We do this by creating an application module and three packaging submodules.

// the application
lazy val app = project
 .in(file("."))
 .settings(
 name := "my-app",
 libraryDependencies += "com.typesafe" % "config" % "1.3.0"
)

Now that our application is defined in a module, we can add the three packaging submodules. We will override the resourceDirectory setting with our app resource directory to gain easy access to the applications resources.

lazy val testPackage = project
 // we put the results in a build folder
 .in(file("build/test"))
 .enablePlugins(JavaAppPackaging)
 .settings(
 // override the resource directory
 resourceDirectory in Compile := (resourceDirectory in (app, Compile)).value,
 mappings in Universal += {
 ((resourceDirectory in Compile).value / "test.conf") -> "conf/application.conf"
 }
)
 .dependsOn(app)

// bascially identical despite the configuration differences
lazy val stagePackage = project
 .in(file("build/stage"))
 .enablePlugins(JavaAppPackaging)
 .settings(
 resourceDirectory in Compile := (resourceDirectory in (app, Compile)).value,
 mappings in Universal += {
 ((resourceDirectory in Compile).value / "stage.conf") -> "conf/application.conf"
 }
)
 .dependsOn(app)

lazy val prodPackage = project
 .in(file("build/prod"))
 .enablePlugins(JavaAppPackaging)
 .settings(
 resourceDirectory in Compile := (resourceDirectory in (app, Compile)).value,
 mappings in Universal += {
 ((resourceDirectory in Compile).value / "prod.conf") -> "conf/application.conf"
 }
)
 .dependsOn(app)

Now that you have your build.sbt set up, you can try building packages.

stages a test build in build/test/target/universal/stage
testPackage/stage

creates a zip with the test configuration
sbt testPackage/universal:packageBin

This technique is a bit verbose, but communicates very clear what is being built and why.

SBT parameters and Build Environment

SBT is a java process, which means you can start it with system properties and use these in your build.
This pattern may be useful in other scopes as well. First we define an AutoPlugin that sets a build environment.

This plugin allows you to start sbt for example like

sbt -Denv=prod
[info] Set current project to my-app (in build file: ...)
[info] Running in build environment: Production
> show buildEnv
[info] Production

Now we can use this buildEnv setting to change things. For example the mappings. We recommend doing this in a
plugin as it involes quite some logic. In this case we decide which configuration file to map as application.conf.

mappings in Universal += {
 val confFile = buildEnv.value match {
 case BuildEnv.Developement => "dev.conf"
 case BuildEnv.Test => "test.conf"
 case BuildEnv.Stage => "stage.conf"
 case BuildEnv.Production => "prod.conf"
 }
 ((resourceDirectory in Compile).value / confFile) -> "conf/application.conf"
}

Ofcourse you can change all other settings, package names, etc. as well. Building different output packages would look
like this

sbt -Denv=test universal:packageBin
sbt -Denv=stage universal:packageBin
sbt -Denv=prod universal:packageBin

SBT configuration scope (not recommended)

The other option is to generate additional scopes in order to build a package like prod:packageBin. Scopes behave
counter intuitive sometimes, why we don’t recommend this technique.

Error

This example is work in progress and doesn’t work. Unless you are not very familiar with sbt we highly
recommend using another technique.

A simple start may look like this

lazy val Prod = config("prod") extend(Universal) describedAs("scope to build production packages")
lazy val Stage = config("stage") extend(Universal) describedAs("scope to build staging packages")

lazy val app = project
 .in(file("."))
 .enablePlugins(JavaAppPackaging)
 .configs(Prod, Stage)
 .settings(
 name := "my-app",
 libraryDependencies += "com.typesafe" % "config" % "1.3.0"
)

You would expect prod:packageBin to work, but extending scopes doesn’t imply inheriting tasks and settings. This
needs to be done manually. Append this to the app project.

// inheriting tasks and settings
.settings(inConfig(Prod)(UniversalPlugin.projectSettings))
.settings(inConfig(Prod)(JavaAppPackaging.projectSettings))
// define custom settings
.settings(inConfig(Prod)(Seq(
 // you have to override everything carefully
 packageName := "my-prod-app",
 executableScriptName := "my-prod-app",
 // this is what we acutally want to change
 mappings += ((resourceDirectory in Compile).value / "prod.conf") -> "conf/application.conf"
)))

Note that you have to know more on native-packager internals than you should, because you override all the necessary
settings with the intended values. Still this doesn’t work as the universal plugin picks up the wrong mappings to build
the package.

Embedding JVM in Universal

Sbt Native Packager supports embedding the jvm using the JDKPackager Plugin,
however, in some cases you may want instead to embed the JVM/JRE in other formats,
e.g. a tarball with one of the java archetypes.

To accomplish this you need to:

	Add the JVM/JRE of your choice to the mappings

	Make the launcher use the embedded jre

Adding the JVM

The JRE is by definition OS dependent, hence you must choose the one appropriate
for your case. The example below assumes a Linux 64 JRE, whose files are at
$HOME/.jre/linux64. The files will be copied to a jre directory in your
distribution

import NativePackagerHelper._

...

mappings in Universal ++= {
 val jresDir = Path.userHome / ".jre"
 val linux64Jre = jresDir.toPath.resolve("linux64")
 directory(linux64Jre.toFile).map { j =>
 j._1 -> j._2.replace(jreLink, "jre")
 }
}

Application Configuration

In order to run your application in production you also need to make the launcher
use the jre added above. This can be done using the -java-home option with a
relative path.

javaOptions in Universal ++= Seq(
 // Your original options

 "-java-home ${app_home}/../jre"
)

Setting the umask for your process

In Linux, the umask, associated with the user running the process, will determine what permissions files generated by the process,
such as log files, will have.

Within the start script

You can set the umask within the generated start script:

bashScriptExtraDefines += "umask 077"

This line will be added just before the application will be executed by the start script and therefore the application process
will also inhert this umask. For more information take a look at the according documentation.

Hint

When using Docker this is the only reliable way right now [https://github.com/moby/moby/issues/19189] to set the umask for the process. Docker will ignore [https://stackoverflow.com/a/46900270/810109] any umask set in e.g. /etc/login.defs (or other config files) within a docker image.

System V/systemd

When using the Java Server Application Archetype usually the system default umask for daemons is fine and can be left unchanged,
however sometime the need arises to override it.

As an alternative to the start script approach described in the section above, to set a custom umask for
your application that is running either via a System V init script or systemd, the umask can be specified via
a custom /etc/default/appname file.

The contents of this file can be specified by creating a template at src/templates/etc-default and adding a line such as the following:

umask 077

Index

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/np_logo_full_horizontal_transparent.png
‘ SBT NATIVE PACKAGER

_static/plus.png

_static/file.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Sitemap

 		
 Introduction

 		
 Goals

 		
 Scope

 		
 Core Concepts

 		
 Format Plugins

 		
 Archetype Plugins

 		
 Mappings

 		
 Architecture

 		
 Getting Started

 		
 Setup

 		
 Native Tools

 		
 Your first package

 		
 Run the app

 		
 Create a package

 		
 Formats

 		
 Universal Plugin

 		
 Related Plugins

 		
 Requirements

 		
 Build

 		
 Configurations

 		
 Settings

 		
 Tasks

 		
 Customize

 		
 Linux Plugin

 		
 Related Plugins

 		
 Build

 		
 Configurations

 		
 Settings

 		
 Customize

 		
 Debian Plugin

 		
 Requirements

 		
 Build

 		
 Configurations

 		
 Settings

 		
 Tasks

 		
 Customize

 		
 Rpm Plugin

 		
 Requirements

 		
 Build

 		
 Configuration

 		
 Settings

 		
 Tasks

 		
 Customize

 		
 Docker Plugin

 		
 Requirements

 		
 Build

 		
 Configuration

 		
 Settings

 		
 Tasks

 		
 Customize

 		
 Windows Plugin

 		
 Requirements

 		
 Build

 		
 Configuration

 		
 Settings

 		
 Tasks

 		
 Customize

 		
 JDKPackager Plugin

 		
 Requirements

 		
 Enabling

 		
 Build

 		
 Settings

 		
 Example

 		
 Debugging

 		
 GraalVM Native Image Plugin

 		
 Requirements

 		
 Build

 		
 Settings

 		
 GraalVM Resources

 		
 Tasks

 		
 Archetypes

 		
 Java Command Line Application

 		
 Features

 		
 Usage

 		
 Settings & Tasks

 		
 Start script options

 		
 Multiple Applications

 		
 Customize

 		
 Java Server Application

 		
 Features

 		
 Usage

 		
 Settings & Tasks

 		
 Default Mappings

 		
 Customize

 		
 Systemloaders

 		
 Overview

 		
 SystemV

 		
 Systemd

 		
 Upstart

 		
 Customization

 		
 Configuration Archetypes

 		
 AshScript Plugin

 		
 ClasspathJar & LauncherJar Plugin

 		
 Jlink Plugin

 		
 Known issues

 		
 Further reading

 		
 An archetype cheatsheet

 		
 Path Configurations

 		
 JVM Options

 		
 Overriding Templates

 		
 Recipes

 		
 Custom Package Formats

 		
 SBT Assembly

 		
 Proguard

 		
 Multi Module Builds

 		
 Custom Packaging Format

 		
 Dealing with long classpaths

 		
 Generate a launcher jar

 		
 Generate a classpath jar

 		
 Configure a wildcard classpath

 		
 Play 2 Packaging

 		
 Build Configuration

 		
 Application Configuration

 		
 Deployment

 		
 Setup publish Task

 		
 Default Deployment

 		
 Custom Deployments

 		
 Custom Configurations

 		
 Scala JS packaging

 		
 Package webjars and scalajs resources

 		
 Build the same package with different configs

 		
 SBT sub modules

 		
 SBT parameters and Build Environment

 		
 SBT configuration scope (not recommended)

 		
 Embedding JVM in Universal

 		
 Adding the JVM

 		
 Application Configuration

 		
 Setting the umask for your process

 		
 Within the start script

 		
 System V/systemd

_images/np_logo_full_horizontal_transparent.png
‘ SBT NATIVE PACKAGER

_static/up.png

