

 [image: SBT Native Packager Logo]
The sbt-native-packager attempts to make building packages for different operating systems easier. While it provides
some basic abstractions around packaging, it also allows you to dig down into the nuts and bolts of each platform as
needed to generate the best package possible.

“Code once, deploy anywhere”

Read the Introduction to learn how native-packager works. The Getting Started guide will help you set up
your first package. The Packaging Formats and Project Archetypes sections explain the different plugins in more
detail, while Recipes provide solutions for common configurations.

Sitemap

	Introduction
	Goals

	Scope

	Core Concepts

	Getting Started
	Setup

	Your first package

	Formats
	Universal Plugin

	Linux Plugin

	Debian Plugin

	Rpm Plugin

	Docker Plugin

	Windows Plugin

	JDKPackager Plugin

	GraalVM Native Image Plugin

	Archetypes
	Java Command Line Application

	Java Server Application

	Systemloaders

	Configuration Archetypes

	Jlink Plugin

	An archetype cheatsheet

	Recipes
	Custom Package Formats

	Dealing with long classpaths

	Play 2 Packaging

	Deployment

	Scala JS packaging

	Build the same package with different configs

	Embedding JVM in Universal

	Setting the umask for your process

Introduction

SBT native packager lets you build application packages in native formats and offers different archetypes for common
configurations, such as simple Java apps or server applications.

This section provides a general overview of native packager and its core concepts. If you want a quick start, go to the
getting started section. However we recommend understanding the core concepts, which will help
you to get started even quicker.

Goals

Native packager defines project goals in order to set expectations and scope for this project.

	
	Native formats should build on their respective platform

	This allows native packager to support a wide range of formats as the packaging plugin serves as a wrapper around
the actual packaging tool. However, alternative packaging plugins maybe provided if a java/scala implementation
exists. As an example debian packages should always build on debian systems, however native packager provides
an additional plugin that integrates JDeb for a platform independent packaging strategy.

	
	Provide archetypes for zero configuration builds

	While packaging plugins provide the how a package is created, archetypes provide the configuration for what gets
packaged. Archetypes configure your build to create a package for a certain purpose. While an archetype may not
support all packaging formats, it should work without configuration for the supported formats.

	
	Enforce best-practices

	There is no single way to create a package. Native packager tries to create packages following best practices,
e.g. for file names, installation paths or script layouts.

Scope

While native packager provides a wide range of formats and archetype configurations, its scope is relatively narrow.
Native packager only takes care of packaging, the act of putting a list of mappings (source file to install target
path) into a distinct package format (zip, rpm, etc.).

Archetypes like Java Application Archetype or Java Server Application Archetype only add additional files to the mappings
enriching the created package, but they don’t provide any new features for native-packager core functionality. Much like
the packaging format plugins, the archetypes rely on functionality already available on your
deploy target.

These things are out of native packagers scope

	
	Providing application lifecyle management.

	The Java Server Application Archetype provides configurations for common system-loaders like SystemV, Upstart or SystemD.
However creating a custom solution which includes stop scripts, PID management, etc. are not part of native
packager.

	
	Providing deployment configurations

	Native packager produces artifacts with the packageBin task. What you do with these is part of another step in
your process.

Core Concepts

Native packager is based on a few simple concepts. If you understand these, you will be able to customize your build,
create own packaging formats and deploy more effectively.

	Separation of concerns with two kinds of plugins

	format plugins define how a package is created

	archetype plugins define what a package should contain

	Mappings define how your build files should be organized on the target system.

Mappings are a Seq[(File, String)], which translates to “a list of tuples, where each tuple defines a source file that gets mapped to a path on the target system”.

The following sections describe these concepts in more detail.

Format Plugins

Format plugins provide the implementation to create package, the how a package is created. For example the
Debian Plugin provides a way to package debian packages. Each format plugin has its
own documentation. Each plugin provides a common set of features:

	
	Provide a new configuration scope

	Formats define their own configuration scope to be able to customize every shared setting or task.

	
	Provide package format related settings and tasks

	Each format plugin may add additional settings or tasks that are only used by this plugin. Normally these settings
start with the plugin name, e.g. rpmXYZ.

	
	Implement package task

	packageBin or publishLocal tasks provide the actual action to create a package.

By enabling a format plugin only with

enablePlugins(SomePackageFormatPlugin)

the resulting package will be empty because a format plugin doesn’t provide any configuration other than the default settings
for the format plugin’s specific settings.

Archetype Plugins

While format plugins provide the how, archetypes provide the what gets packaged. An archetype changes the configuration in all supported package format scopes; they don’t add configuration
scopes.

A full list of archetypes can be found
here.

	An archetype may provide the following:

	
	Archetype related settings and tasks

	New files in your package

By enabling an archetype plugin with

enablePlugins(SomeArchetypePlugin)

all configuration changes will be applied as well as all supported format plugins will be enabled.

Tip

An archetype plugin should be the starting point for creating packages!

 Getting Started

Getting Started

Setup

Sbt-native-packager is an AutoPlugin. Add it to your plugins.sbt

addSbtPlugin("com.github.sbt" % "sbt-native-packager" % "x.y.z")

Native Tools

Depending on the package format you want to create, you may need additional tools available on your machine.
Each packaging format has a requirements section.

Your first package

Native packager provides packaging format plugins and archetype plugins to separate
configuration and actual packaging. To get started we use the basic Java Application Archetype.
For more archetypes see the archetypes page.

In your build.sbt you need to enable the archetype like this

enablePlugins(JavaAppPackaging)

This will also enable all supported format plugins.

Run the app

Native packager can stage your app so you can run it locally without having the app packaged.

sbt stage
./target/universal/stage/bin/<your-app>

Create a package

We can generate other packages via the following tasks. Note that each packaging format may needs some additional
configuration and native tools available. Here’s a complete list of current formats.

	Universal/packageBin - Generates a universal zip file

	Universal/packageZipTarball - Generates a universal tgz file

	Debian/packageBin - Generates a deb

	Docker/publishLocal - Builds a Docker image using the local Docker server

	Rpm/packageBin - Generates an rpm

	Universal/packageOsxDmg - Generates a DMG file with the same contents as the universal zip/tgz.

	Windows/packageBin - Generates an MSI

 Packaging Formats

Packaging Formats

There is a plugin for each packaging format that native-packager supports. These plugins can rely on each other to reuse
existing functionality. Currently the autoplugin hierarchy looks like this

 SbtNativePackager
 +
 |
 |
 +-------+ Universal +--------+-------------+----------------+
+			
 + + + + +
Docker +-+ Linux +-+ Windows JDKPackager GraalVM native-image
 | |
 | |
 + +
 Debian RPM

If you enable the DebianPlugin all plugins that depend on the DebianPlugin will be enabled as well (LinuxPlugin, UniversalPlugin
and SbtNativePackager).

Each packaging format defines its own scope for settings and tasks, so you can customize
your build on a packaging level. The settings and tasks must be explicitly inherited. For the mappings task this
looks like this

Docker / mappings := (Universal / mappings).value

To learn more about a specific plugin, read the appropriate doc.

Tip

You may also need to read the docs of the dependent plugins. We recommend always that you read the
Universal Plugin documentation because all plugins rely on this one.

 Universal Plugin

Universal Plugin

The Universal Plugin creates a generic, or “universal” distribution package. This is called “universal packaging.” Universal packaging just takes a plain mappings configuration and generates various
package files in the output format specified. Because it creates a distribution
that is not tied to any particular platform it may require manual labor (more work from your users) to correctly install and set up.

Related Plugins

	Linux Plugin

	Docker Plugin

	Windows Plugin

Requirements

Depending on what output format you want to use, you need one of the following applications installed

	zip (if native)

	gzip

	xz

	tar

	hdiutil (for dmg)

Build

There is a task for each output format

Zip

sbt Universal/packageBin

Tar

sbt Universal/packageZipTarball

Xz

sbt Universal/packageXzTarball

Dmg

sbt Universal/packageOsxDmg

Required Settings

The Universal Plugin has no mandatory fields.

Enable the universal plugin

enablePlugins(UniversalPlugin)

Configurations

Settings and Tasks inherited from parent plugins can be scoped with Universal.

Universal packaging provides three Configurations:

	Universal

	For creating full distributions

	UniversalDocs

	For creating bundles of documentation

	UniversalSrc

	For creating bundles of source.

Here is how the values for name and packageName are used by the three configurations:

Universal / name := name.value

UniversalDocs / name := (Universal / name).value

UniversalSrc / name := (Universal / name).value

Universal / packageName := packageName.value

Settings

As we showed before, the universal packages are completely configured through the use of mappings. Simply
specify the desired mappings for a given configuration. For example:

Universal / mappings += (Compile / packageBin).value -> "lib/foo.jar"

However, sometimes it may be advantageous to customize the files for each archive separately. For example, perhaps
the .tar.gz has an additional README plaintext file in addition to a README.html. To add this just to the .tar.gz file,
use the task-scope feature of sbt:

Universal / packageZipTarball / mappings += file("README") -> "README"

Besides mappings, the name, sourceDirectory and target configurations are all respected by universal packaging.

Note: The Universal plugin will make anything in a bin/ directory executable. This is to work around issues with JVM
and file system manipulations.

Tasks

	Universal / package-bin

	Creates the zip universal package.

	Universal / package-zip-tarball

	Creates the tgz universal package.

	Universal / package-xz-tarball

	Creates the txz universal package. The xz command can get better compression
for some types of archives.

	Universal / package-osx-dmg

	Creates the dmg universal package. This only work on macOS or systems with hdiutil.

	UniversalDocs / packageBin

	Creates the zip universal documentation package.

	UniversalDocs / packageZipTarball

	Creates the tgz universal documentation package.

	UniversalDocs / packageXzTarball

	Creates the txz universal documentation package. The xz command can get better compression
for some types of archives.

Customize

Universal Archive Options

You can customize the commandline options (if used) for the different zip formats.
If you want to force local for the tgz output add this line:

Universal / packageZipTarball / universalArchiveOptions := Seq("--force-local", "-pcvf")

This will set the cli options for the packageZipTarball task in the Universal plugin to use the options --force-local and pcvf.
Be aware that the above line will overwrite the default options. You may want to prepend your options, doing something like:

Universal / packageZipTarball / universalArchiveOptions :=
 (Seq("--exclude", "*~") ++ (Universal / packageZipTarball / universalArchiveOptions).value)

Currently, these task can be customized:

	Universal/package-zip-tarball

	Universal / packageZipTarball / universalArchiveOptions

	Universal/package-xz-tarball

	Universal / packageXzTarball / universalArchiveOptions

Getting Started with Universal Packaging

By default, all files found in the src/universal directory are included in the distribution. So, the first step
in creating a distribution is to place files in this directory and organize them as you’d like in them to be in the distributed package.
If your output format is a zip file, for example, although the distribution will consist of just one zip file, the files and directories within that zip file will reflect the same organization and structure as src/universal.

To add files generated by the build task to a distribution, simply add a mapping to the Universal / mappings setting. Let’s
look at an example where we add the packaged jar of a project to the lib folder of a distribution:

Universal / mappings += {
 val jar = (Compile / packageBin).value
 jar -> ("lib/" + jar.getName)
}

The above does two things:

	It depends on Compile / packageBin which will generate a jar file form the project.

	It creates a mapping (a Tuple2[File, String]) which denotes the file and the location in the distribution as a string.

You can use this pattern to add anything you desire to the package.

Note

If you are using an application archetype or the playframework, the jar mapping is already defined and
you should not include these in your build.sbt. issue 227 [https://github.com/sbt/sbt-native-packager/issues/227]

Universal Conventions

This plugin has a set of conventions for universal packages that enable the automatic generation of native packages. The
universal convention has the following package layout:

bin/
 <scripts and things you want on the path>
lib/
 <shared libraries>
conf/
 <configuration files that should be accessible using platform standard config locations.>
doc/
 <Documentation files that should be easily accessible. (index.html treated specially)>

If your plugin matches these conventions, you can enable the settings to automatically generate native layouts based on your universal package. To do
so, add the following to your build.sbt:

mapGenericFilesToLinux

mapGenericFilesToWinows

In Linux, this mapping creates symlinks from platform locations to the install location of the universal package. For example,
given the following packaging:

bin/
 cool-tool
lib/
 cool-tool.jar
conf/
 cool-tool.conf

The mapGenericFilesToLinux settings will create the following package (symlinks denoted with ->):

/usr/share/<pkg-name>/
 bin/
 cool-tool
 lib/
 cool-tool.jar
 conf/
 cool-tool.conf
/usr/bin/
 cool-tool -> /usr/share/<package-name>/bin/cool-tool
/etc/<pkg-name> -> /usr/share/<package-name>/conf

The mapGenericFilesToWindows will construct an MSI that installs the application in <Platform Program Files>\<Package Name> and include
the bin directory on Windows PATH environment variable (optionally disabled).

While these mappings provide a great start to nice packaging, it still
may be necessary to customize the native packaging for each platform. This can be done by configuring those settings directly.

For example, even using generic mapping, debian has a requirement for changelog files to be fully formed. Using the above generic mapping, we can configure just this
changelog in addition to the generic packaging by first defining a changelog in src/debian/changelog and then adding the following setting:

Debian / linuxPackageMappings +=
 (packageMapping(
 ((Debian / sourceDirectory).value / "changelog") -> "/usr/share/doc/sbt/changelog.gz"
) withUser "root" withGroup "root" withPerms "0644" gzipped) asDocs()

Notice how we’re only modifying the package mappings for Debian linux packages.

For more information on the
underlying packaging settings, see Windows Plugin and Linux Plugin documentation.

Change/Remove Top Level Directory in Output

Your output package (zip, tar, gz) by default contains a single folder
with your application. If you want to change this folder or remove this
top level directory completely use the topLevelDirectory setting.

Removing the top level directory

topLevelDirectory := None

Changing it to another value, e.g. the packageName without the version

topLevelDirectory := Some(packageName.value)

Or just a plain hardcoded string

topLevelDirectory := Some("awesome-app")

Skip packageDoc task on stage

The stage task forces a javadoc.jar build, which could slow down stage tasks performance. In order to deactivate
this behaviour, add this to your build.sbt

compile / packageDoc / mappings := Seq()

Source issue 651 [https://github.com/sbt/sbt-native-packager/issues/651].

MappingsHelper

The MappingsHelper [http://www.scala-sbt.org/sbt-native-packager/latest/api/#com.typesafe.sbt.packager.MappingsHelper$] class provides a set of helper functions to make mapping directories easier.

sbt 0.13.5 and plugin 1.0.x or higher

import NativePackagerHelper._

plugin version 0.8.x or lower

import com.typesafe.sbt.SbtNativePackager._
import NativePackagerHelper._

You get a set of methods which will help you to create mappings very easily.

Universal / mappings ++= directory("src/main/resources/cache")

Universal / mappings ++= contentOf("src/main/resources/docs")

Universal / mappings ++= directory(sourceDirectory.value / "main" / "resources" / "cache")

Universal / mappings ++= contentOf(sourceDirectory.value / "main" / "resources" / "docs")

Mapping Examples

SBT provides the IO [http://www.scala-sbt.org/0.13.1/docs/Detailed-Topics/Paths.html] and Path [http://www.scala-sbt.org/0.13.1/docs/Detailed-Topics/Paths.html] APIs, which
help make defining custom mappings easy. The files will appear in the generate universal zip, but also in your
debian/rpm/msi/dmg builds as described above in the conventions.

The Compile / packageBin dependency is only needed if your files get generated
during the packageBin command or before. For static files you can remove it.

Mapping a complete directory

There are some helper methods so you can create a mapping for a complete directory:

For static content, you can just add the directory to the mapping:

Universal / mappings ++= directory("SomeDirectoryNameToInclude")

If you want to add everything in a directory where the path for the directory is dynamic, e.g. the scala-2.10/api directory that is nested under in the target directory, and target is defined in a task:

(Universal / mappings) ~= (_ ++ directory(target.value / "scala-2.10" / "api"))

You can also use the following approach if, for example, you need more flexibility:

(Universal / mappings) ++= {
 val dir = target.value / "scala-2.10" / "api"
 (dir ** AllPassFilter) pair relativeTo(dir.getParentFile)
}

Here is what happens in this code:

dir.*** is a PathFinder [http://www.scala-sbt.org/0.13.1/docs/Detailed-Topics/Paths.html#path-finders] method that creates a sequence of every file under a directory, including the directory itself.

relativeTo() returns a String that is the path relative to whatever you pass to it.

dir.getParentFile returns the parent of dir. In this example, it’s the parent directory of whatever target is.

pair is a PathFinder [http://www.scala-sbt.org/0.13.1/docs/Detailed-Topics/Paths.html#path-finders] method that takes a function and applies it to every file (in the sequence), and returns a (file, function-result) tuple.

Putting it all together, this creates a map of every file under target/scala-2.10/api (including the directory target/scala-2.10/api itself)
with a string that is the path to the parent of target. This is a mapping for every file and a string that tells the universal packager where it is located.

For example:

if target = /Users/you/dev/fantasticApp/src/scala/fantasticApp-0.1-HOTFIX01

and
fantasticApp-0.1-HOTFIX01/scala-2.10/api/ contains the files

somedata.csv
README

Then the code above will produce this mapping:

((/Users/you/dev/fantasticApp/src/scala/fantasticApp-0.1-HOTFIX01,fantasticApp-0.1-HOTFIX01),

(/Users/you/dev/fantasticApp/src/scala/fantasticApp-0.1-HOTFIX01/README,fantasticApp-0.1-HOTFIX01/README),

(//Users/you/dev/fantasticApp/src/scala/fantasticApp-0.1-HOTFIX01/somedata.csv,fantasticApp-0.1-HOTFIX01/somedata.csv))

Note that the first item of each pair is the full path to where the file exists on the system /Users/you....., and the
second part is the just the path starting after .../scala. That second part is what is returned from
<each file>.relativeTo(dir.getParentFile).

Mapping the content of a directory (excluding the directory itself)

Universal / mappings ++= {
 val dir = target.value / "scala-2.10" / "api"
 (dir ** AllPassFilter --- dir) pair relativeTo(dir)
}

The dir gets excluded and is used as root for relativeTo(dir).

Filter/Remove mappings

If you want to remove mappings, you have to filter [https://twitter.github.io/scala_school/collections.html#filter] the current list of mappings.
This example demonstrates how to build a fat jar with sbt-assembly, but using all
the convenience of the sbt native packager archetypes.

tl;dr how to remove stuff

// removes all jar mappings in universal and appends the fat jar
Universal / mappings := {
 // universalMappings: Seq[(File,String)]
 val universalMappings = (Universal / mappings).value
 val fatJar = (Compile / assembly).value

 // removing means filtering
 // notice the "!" - it means NOT, so only keep those that do NOT have a name ending with "jar"
 val filtered = universalMappings filter {
 case (file, name) => ! name.endsWith(".jar")
 }

 // add the fat jar to our sequence of things that we've filtered
 filtered :+ (fatJar -> ("lib/" + fatJar.getName))
}

The complete build.sbt should contain these settings if you want a single assembled fat jar.

// the assembly settings
assemblySettings

// we specify the name for our fat jar
assembly / jarName := "assembly-project.jar"

// using the java server for this application. java_application would be fine, too
packageArchetype.java_server

// removes all jar mappings in universal and appends the fat jar
Universal / mappings := {
 val universalMappings = (Universal / mappings).value
 val fatJar = (Compile / assembly).value
 val filtered = universalMappings filter {
 case (file, name) => ! name.endsWith(".jar")
 }
 filtered :+ (fatJar -> ("lib/" + fatJar.getName))
}

// the bash scripts classpath only needs the fat jar
scriptClasspath := Seq((assembly / jarName).value)

 Linux Plugin

Linux Plugin

The native packager plugin is designed so that linux packages look similar but can contain distribution specific information.

Note

The linux plugin depends on the Universal Plugin.

 Debian Plugin

Debian Plugin

The debian package specification is very robust and powerful. If you wish to do any advanced features, it’s best to understand how
the underlying packaging system works. Debian Binary Package Building HOWTO [http://tldp.org/HOWTO/html_single/Debian-Binary-Package-Building-HOWTO/] by Chr. Clemens Lee is an excellent tutorial.

SBT Native Packager provides two ways to build debian packages:

	A native implementation, where you need dpkg-deb installed, or

	A java, platform independent approach with jdeb [https://github.com/tcurdt/jdeb].

By default the native implementation is activated.

Note

The debian plugin depends on the Linux Plugin.

 Rpm Plugin

Rpm Plugin

RedHat rpm files support a number of very advanced features. To take full advantage of this environment,
it’s best to understand how the rpm package system works. How to create an RPM package [http://fedoraproject.org/wiki/How_to_create_an_RPM_package] on the fedora project wiki
is a good tutorial, but it focuses on building packages from source. The sbt-native-packager assumes that SBT has built your source and generated
binary packages.

Note

The rpm plugin depends on the Linux Plugin.

 Docker Plugin

Docker Plugin

Docker images describe how to set up a container for running an application, including what files are present, and what program to run.

https://docs.docker.com/introduction/understanding-docker/ provides an introduction to Docker.

https://docs.docker.com/reference/builder/ describes the Dockerfile: a file which describes how to set up the image.

sbt-native-packager focuses on creating a Docker image which can “just run” the application built by SBT.

Note

The docker plugin depends on the Universal Plugin.

 Windows Plugin

Windows Plugin

Windows packaging is completely tied to the WIX installer toolset. For any non-trivial package,
it’s important to understand how WIX works. http://wix.tramontana.co.hu/ is an excellent tutorial
to how to create packages using wix.

However, the native-packager provides a simple layer on top of wix that may be enough for most projects.
If it is not enough, just override wixConfig or wixFiles tasks. Let’s look at the layer above direct
xml configuration.

Note

The windows plugin depends on the Universal Plugin.

 JDKPackager Plugin

JDKPackager Plugin

This plugin builds on Oracle’s javapackager [https://docs.oracle.com/javase/8/docs/technotes/guides/deploy/packager.html#CCHIHIIJ] tool to generate native application
launchers and installers for macOS, Windows, and Linux. This plugin takes the settings and staged output from
Java Application Archetype and passes them through javapackager
to create native formats per Oracle’s provided features.

The actual mechanism used by this plugin is the support provided by the lib/ant-javafx.jar Ant task library,
which provides more capabilities than the javapackager command line version, but the idea is the same.

This plugin’s most relevant addition to the core sbt-native-packager capabilities is the generation of macOS App
bundles and associated .dmg and .pkg package formats. With this plugin complete drag-and-drop installable
application bundles are possible, including the embedding of the JRE. It can also generate Windows .exe and .msi
installers provided the requisite tools are available on the Windows build platform (see below). While Linux package
formats are also possible via this plugin, it is likely the native sbt-native-packager support for .deb and
.rpm formats will provide more configurability.

Note

The JDKPackagerPlugin depends on the Universal Plugin, Java Application Archetype and Launcher Plugin

 GraalVM Native Image Plugin

GraalVM Native Image Plugin

GraalVM’s native-image compiles Java programs AOT (ahead-of-time) into native binaries.

https://www.graalvm.org/22.1/reference-manual/native-image/ documents the AOT compilation of GraalVM.

The plugin supports both using a local installation of the GraalVM native-image utility, or building inside a
Docker container. If you intend to run the native image on Linux, then building inside a Docker container is
recommended since GraalVM native images can only be built for the platform they are built on. By building in a Docker
container, you can build Linux native images not just on Linux but also on Windows and macOS.

Requirements

To build using a local installation of GraalVM, you must have the native-image utility of GraalVM in your PATH.

native-image quick installation

To get started quickly, eg make native-image available in your PATH,
you may reuse the script that is used for sbt-native-packager’s continuous integration.
To do so, run the following. It will install GraalVM 1.0.0-rc8.

source <(curl -o - https://raw.githubusercontent.com/sbt/sbt-native-packager/master/.travis/download-graalvm)

Build

sbt 'show GraalVMNativeImage/packageBin'

Required Settings

enablePlugins(GraalVMNativeImagePlugin)

Settings

native-image Executable Command (Pay attention if you are using Windows OS)

	graalVMNativeImageCommand

	Set this parameter to point to native-image or native-image.cmd. Set this parameter if it is inconvenient to make native-image available in your PATH.

For example:

graalVMNativeImageCommand := "C:/Program Files/Java/graalvm/bin/native-image.cmd"

Docker Image Build Settings

By default, a local build will be done, expecting the native-image command to be on your PATH. This can be
customized using the following settings.

	graalVMNativeImageGraalVersion

	Setting this enables generating a Docker container to build the native image, and then building it in that container.
It must correspond to a valid version of the
Oracle GraalVM Community Edition Docker image [https://github.com/graalvm/container/pkgs/container/graalvm-ce/]. This setting has no
effect if containerBuildImage is explicitly set.

For example:

graalVMNativeImageGraalVersion := Some("19.1.1")

containerBuildImage

Explicitly set a build image to use. The image must execute the Graal native-image command as its entry point.
It can be configured like so:

containerBuildImage := Some("my-docker-username/graalvm-ce-native-image:19.1.1")

A helper is provided to automatically generate a container build image from a base image that contains a Graal
installation. For example, if you have a GraalVM enterprise edition docker image, you can turn it into a native
image builder like so:

containerBuildImage := GraalVMNativeImagePlugin.generateContainerBuildImage("example.com/my-username/graalvm-ee:latest")

The plugin will not build the native image container builder if it finds it in the local Docker registry already.
The native image builders tag name can be seen in the logs if you wish to delete it to force a rebuild, in the above
case, the name will be example.com-my-username-graalvm-ee:latest.

Publishing Settings

	graalVMNativeImageOptions

	Extra options that will be passed to the native-image command. By default, this includes the name of the main class.

GraalVM Resources

If you are building the image in a docker container, and you have any resources that need to be available to the
native-image command, such as files passed to -H:ResourceConfigurationFiles or
-H:ReflectionConfigurationFiles, you can place these in your projects src/graal directory. Any files in there
will be made available to the native-image docker container under the path /opt/graalvm/stage/resources.

Tasks

The GraalVM Native Image plugin provides the following commands:

	GraalVMNativeImage / packageBin

	Generates a native image using GraalVM.

 Project Archetypes

Project Archetypes

Archetype plugins provide predefined configurations for your build. Like format plugins,
archetype plugins can depend on other archetype plugins to extend existing functionality.

Project archetypes are default deployment scripts that try to “do the right thing” for a given type of project.
Because not all projects are created equal, there is no single archetype for all native packages, but a set
of them to choose from.

	Java Command Line Application

	Java Server Application

	Systemloaders

	Configuration Archetypes

	Jlink Plugin

	An archetype cheatsheet

 Java Application Archetype

Java Application Archetype

Application packaging focuses on how your application is launched (via a bash or bat script), how dependencies
are managed and how configuration and other auxiliary files are included in the final distributable. The
JavaAppPackaging archetype provides a default application structure and executable scripts to launch your application.

Additionally there is Java Server Application Archetype which provides platform-specific functionality for installing your
application in server environments. You can customize specific debian and rpm packaging for a variety of platforms and
init service loaders including Upstart, System V and SystemD.

Features

The JavaAppPackaging archetype contains the following features.

	Default application mappings (no fat jar)

	Executable bash/bat script

Usage

Enable the JavaAppPackaging plugin in your build.sbt with

enablePlugins(JavaAppPackaging)

This archetype will use the mainClass setting of sbt (automatically discovers your main class) to generate
bat and bin scripts for your project. In case you have multiple main classes you can point to a specific
class with the following setting:

Compile / mainClass := Some("foo.bar.Main")

In order to generate launch scripts only for specified mainClass, you will need to discard automatically found main classes:

Compile / discoveredMainClasses := Seq()

To create a staging version of your package call

sbt stage

The universal layout produced in your target/universal/stage folder looks like the following:

bin/
 <app_name> <- BASH script
 <app_name>.bat <- cmd.exe script
lib/
 <Your project and dependent jar files here.>

You can add additional files to the project by placing things in src/windows, src/universal or src/linux as
needed. To see if your application runs:

cd target/universal/stage
./bin/<app-name>

This plugin also enables all supported packaging formats as well. Currently all formats are supported by the
java app archetype! For example you can build zips, deb or docker by just enabling JavaAppPackaging.

sbt
create a zip file
> Universal / packageBin
create a deb file
> Debian / packageBin
publish a docker image to your local registry
> Docker / publishLocal

Settings & Tasks

This is a non extensive list of important settings and tasks this plugin provides. All settings
have sensible defaults.

	makeBashScripts

	Creates or discovers the bash script used by this project.

	makeBatScripts

	Creates or discovers the bat script used by this project.

	bashScriptTemplateLocation

	The location of the bash script template.

	batScriptTemplateLocation

	The location of the bat script template.

	bashScriptConfigLocation

	The location of the bash script on the target system.
Default ${app_home}/../conf/application.ini

	batScriptConfigLocation

	The location of the bat script on the target system.
Default %APP_HOME%\conf\application.ini

	bashScriptExtraDefines

	A list of extra definitions that should be written to the bash file template.

	batScriptExtraDefines

	A list of extra definitions that should be written to the bat file template.

Start script options

The start script provides a few standard options you can pass:

	-h | -help

	Prints script usage

	-v | -verbose

	Prints out more information

	-no-version-check

	Don’t run the java version check

	-jvm-debug <port>

	Turn on JVM debugging, open at the given port

	-java-home <java home>

	Override the default JVM home, it accept variable expansions, e.g.
-java-home ${app_home}/../jre

	-main

	Define a custom main class

To configure the JVM these options are available

	JAVA_OPTS

	environment variable, if unset uses “$java_opts”

	-Dkey=val

	pass -Dkey=val directly to the java runtime

	-J-X

	pass option -X directly to the java runtime (-J is stripped).
E.g. -J-Xmx1024

In order to pass application arguments you need to separate the jvm arguments from the
application arguments with --. For example

./bin/my-app -Dconfig.resource=prod.conf -- -appParam1 -appParam2

Multiple Applications

If you have multiple main classes then the JavaAppPackaging archetype provides you with two different ways of
generating start scripts.

	A start script for each entry point. This is the default behaviour, when no Compile / mainClass is set

	One start script for the defined Compile / mainClass and forwarding scripts for all other main classes.

Note

What does ‘forwarder script’ mean?

Native-packager’s start script provides a -main option to override the main class that should be executed.
A forwarder script only overrides this attribute and forwards all other parameters to the normal start script.

All customization you implemented for the main script will also apply for the forwarder scripts.

 Application and runtime configuration

 The application structure is customizable via the standard mappings, which is described in the
Universal Plugin Section.

Application and runtime configuration

There are generally two types of configurations:

	Configuring the JVM and the process

	Configuring the application itself

You have two options to define your runtime and application configurations.

Configuration file

The start scripts provided by the BatStartScriptPlugin and BashStartScriptPlugin can both load an external
configuration file during execution. You can define the configuration file location for both with these two settings.

	bashScriptConfigLocation

	The location of the bash script on the target system.

Default ${app_home}/../conf/application.ini

	batScriptConfigLocation

	The location of the bat script on the target system.

Default %APP_HOME%\conf\application.ini

The configuration path is the path on the target system. This means that native-packager needs to process this path
to create a valid Universal/mapping s entry.

	${app_home}/../ is removed

	%APP_HOME% is removed and \ is being replaced with /

This means you can either

	Create a configuration path relative to the application directory (recommended)

	Create an absolute path that has to match your target and build system

Example

// configure two different files for bash and bat
bashScriptConfigLocation := Some("${app_home}/../conf/jvmopts-bash")
batScriptConfigLocation := Some("%APP_HOME%\\conf\\jvmopts-bat")

Now we know how to configure the location of our configuration file. The next step is to learn how to provide content
for the configuration file.

Via build.sbt

You can specify your options via the build.sbt.

Universal / javaOptions ++= Seq(
 // -J params will be added as jvm parameters
 "-J-Xmx64m",
 "-J-Xms64m",

 // others will be added as app parameters
 "-Dproperty=true",
 "-port=8080",

 // you can access any build setting/task here
 s"-version=${version.value}"
)

For the -X settings you need to add a suffix -J so the start script will
recognize these as vm config parameters.

When you use the Universal / javaOptions sbt-native-packager will generate configuration files
if you haven’t set the batScriptConfigLocation and/or bashScriptConfigLocation to None.

Via Application.ini

The second option is to create src/universal/conf/application.ini with the following template

Setting -X directly (-J is stripped)
-J-X
-J-Xmx1024

Add additional jvm parameters
-Dkey=val

Turn on JVM debugging, open at the given port
-jvm-debug <port>

Don't run the java version check
-no-version-check

enabling debug and sending -d as app argument
the '--' prevents app-parameter swallowing when
using a reserved parameter. See #184
-d -- -d

The file will be installed to ${app_home}/conf/application.ini and read from there
by the startscript. You can use # for comments and new lines as you like. This file
currently doesn’t has any variable substitution. We recommend using the build.sbt if
you need any information from your build.

The configuration file for bash scripts takes arguments for the BASH file on each line,
and allows comments which start with the # character. Essentially, this provides
a set of default arguments when calling the script.

By default, any file in the src/universal directory is packaged. This is a convenient
way to include things like licenses, and readmes.

If you don’t like application.ini as a name, you can change this in the build.sbt.
The default configuration looks like this

bashScriptConfigLocation := Some("${app_home}/../conf/application.ini")
batScriptConfigLocation := Some("%APP_HOME%\\conf\\application.ini")

Add code to the start scripts

The second option is to add code to the generated start scripts via these settings.

	bashScriptExtraDefines

	A list of extra definitions that should be written to the bash file template.

	batScriptExtraDefines

	A list of extra definitions that should be written to the bat file template.

BashScript defines

The bash script accepts extra commands via bashScriptExtraDefines. Generally you can add arbitrary
bash commands here, but for configurations you have two methods to add jvm and app parameters.

// add jvm parameter for typesafe config
bashScriptExtraDefines += """addJava "-Dconfig.file=${app_home}/../conf/app.config""""
// add application parameter
bashScriptExtraDefines += """addApp "--port=8080""""

Syntax

	${{template_declares}}

	Will be replaced with a series of declare <var> lines based on the bashScriptDefines key. These variables
are predefined:
* app_mainclass - The main class entry point for the application.
* app_classpath - The complete classpath for the application (in order).

BatScript defines

The Windows batch script accepts extra commands via batScriptExtraDefines. It offers
two methods to add jvm and app parameters using similar syntax to the BASH script.

// add jvm parameter for typesafe config
batScriptExtraDefines += """call :add_java "-Dconfig.file=%APP_HOME%\conf\app.config""""
// add application parameter
batScriptExtraDefines += """call :add_app "--port=8080""""

Syntax

@@APP_ENV_NAME@@
will be replaced with the script friendly name of your package.

@@APP_NAME@@
will be replaced with user friendly name of your package.

@APP_DEFINES@@
will be replaced with a set of variable definitions, like APP_MAIN_CLASS, APP_MAIN_CLASS.

Start script customizations

While the native packager tries to provide robust BASH/BAT scripts for your applications, they may not always be enough.
The native packager provides a mechanism where the template used to create each script can be customized or directly
overridden.

Bash and Bat script extra defines

For the bat and bash script are separated settings available to add arbitrary code to the start script.
See BashScript defines and BatScript defines for details.

The bashScriptExtraDefines sequence allows you to add new lines to the default bash script used to start the
application. This is useful when you need a setting which isn’t mean for the command-line parameter list passed to the
java process. The lines added to bashScriptExtraDefines are placed near the end of the script and have access to a
number of utility bash functions (e.g. addJava, addApp, addResidual, addDebugger). You can add lines to
this script as we did for the Typesafe config file above. For more complex scripts you can also inject a separate file
managed in your source tree or resource directory:

bashScriptExtraDefines ++= IO.readLines(baseDirectory.value / "scripts" / "extra.sh")

This will add the contents of /scripts/extra.sh in the resource directory to the bash script. Note you should always
concatenate lines to bashScriptExtraDefines as other stages in the pipeline may be include lines to the
start-script.

Overriding Templates (Bash/Bat)

Warning

Replacing the default templates should really only be done if:

	There is a bug in one of the script templates you need to workaround

	There is a deficiency in the features of one of the templates you need to fix.

In general, the templates are intended to provide enough utility that customization is only necessary for truly custom
scripts.

 Java Server Application Archetype

Java Server Application Archetype

Hint

Supports only deb and rpm packaging. No support for Windows or macOS

 Application Configuration

Application Configuration

After creating a package, the very next thing needed, usually, is the ability for users/ops to customize the application once it’s deployed. Let’s add some configuration to the newly deployed application.

There are generally two types of configurations:

	Configuring the JVM and the process

	Configuring the Application itself.

The server archetype provides you with a special feature to configure your application
with a single file outside of customizing the bash or bat script for applications.
As this file is OS dependent, each OS gets section.

Linux Configuration

There are different ways described in Customizing the Application
and can be used the same way.

The server archetype adds an additional way with an etc-default file placed
in src/templates, which currently only works for SystemV and
systemd. The file gets sourced before the actual startscript is executed.
The file will be installed to /etc/default/<normalizedName>

Example /etc/default/<normalizedName> for SystemV:

Available replacements
--
${{author}} package author
${{descr}} package description
${{exec}} startup script name
${{chdir}} app directory
${{retries}} retries for startup
${{retryTimeout}} retry timeout
${{app_name}} normalized app name
${{daemon_user}} daemon user

Setting JAVA_OPTS

JAVA_OPTS="-Dpidfile.path=/var/run/${{app_name}}/play.pid $JAVA_OPTS"

For rpm/systemv you need to set the PIDFILE env variable as well
PIDFILE="/var/run/${{app_name}}/play.pid"

export env vars for 3rd party libs

COMPANY_API_KEY=123abc
export COMPANY_API_KEY

Daemon User and Group

Customize the daemon user and group for your application with the following settings.

// a different daemon user
Linux / daemonUser := "my-user"
// if there is an existing one you can specify the uid
Linux / daemonUserUid := Some("123")
// a different daemon group
Linux / daemonGroup := "my-group"
// if the group already exists you can specify the uid
Linux / daemonGroupGid := Some("1001")

Environment variables

The usual JAVA_OPTS can be used to override settings. This is a nice way to test
different jvm settings with just restarting the jvm.

Windows Configuration

Support planned.

Systemloader Configuration

See the Systemloaders documentation on how to add a systemloader (e.g. SystemV, Systemd or Upstart) to your
package.

Package Lifecycle Configuration

Some scripts are covered in the standard application type. Read more on Java Application Customization.
For the java_server package lifecycle scripts are customized to provide the following additional features

	Chowning directories and files correctly (if necessary)

	Create/Delete users and groups according to your mapping

	Register application at your init system

For this purpose sbt-native-packager ships with some predefined templates. These can be
overridden with different techniques, depending on the packaging system.

Partially Replace Template Functionality

Most sbt-native-packager scripts are broken up into partial templates in the resources directory [https://github.com/sbt/sbt-native-packager/tree/master/src/main/resources/com/typesafe/sbt/packager].
You can override these default template snippets by adding to the linuxScriptReplacements map. As
an example you can change the loader-functions which starts/stop services based on a certain `ServerLoader`:

linuxScriptReplacements += "loader-functions" -> TemplateWriter.generateScript(getClass.getResource("/custom-loader-functions"), Nil)

The custom-loader-functions file must declare the startService() and stopService() functions used in various
service management scripts.

RPM Scriptlets

RPM puts all scripts into one file. To override or append settings to your
scriptlets use Rpm / maintainerScripts or these ``RpmConstants._``s:

	Pre

	%pre scriptlet

	Post

	%post scriptlet

	Pretrans

	%pretrans scriptlet

	Posttrans

	%posttrans scriptlet

	Preun

	“%preun scriptlet”

	Postun

	%postun scriptlet

	Verifyscript

	%verifyscript scriptlet

If you want to have your files separated from the build definition use the
default location for rpm scriptlets. To override default templates in a RPM
build put the new scriptlets in the rpmScriptletsDirectory (by default src/rpm/scriptlets).

	RpmConstants.Scriptlets

	By default to src/rpm/scriptlets. Place your templates here.

Available templates are

post-rpm
pre-rpm
postun-rpm
preun-rpm

The corresponding maintainer file names are:

pretrans
post
pre
postun
preun
verifyscript
posttrans

Override Postinst scriptlet

By default the post-rpm template only starts the service, but doesn’t register it.

service ${{app_name}} start

For CentOS we can do

chkconfig ${{app_name}} defaults
service ${{app_name}} start || echo "${{app_name}} could not be started. Try manually with service ${{app_name}} start"

For RHEL

update-rc.d ${{app_name}} defaults
service ${{app_name}} start || echo "${{app_name}} could not be started. Try manually with service ${{app_name}} start"

Debian Control Scripts

To override default templates in a Debian build put the new control files in the
debianControlScriptsDirectory (by default src/debian/DEBIAN).

	debianControlScriptsDirectory

	By default to src/debian/DEBIAN. Place your templates here.

	debianMakePreinstScript

	creates or discovers the preinst script used by this project.

	debianMakePrermScript

	creates or discovers the prerm script used by this project.

	debianMakePostinstScript

	creates or discovers the postinst script used by this project.

	debianMakePostrmScript

	creates or discovers the postrm script used by this project.

Available templates are

postinst
preinst
postun
preun

Linux Replacements

This is a list of values you can access in your templates

${{author}}
${{descr}}
${{exec}}
${{chdir}}
${{retries}}
${{retryTimeout}}
${{app_name}}
${{daemon_user}}
${{daemon_group}}

Attention

Every replacemen