
sbt-native-packager
Release 1.0a1

Josh Suereth

Oct 05, 2020

Contents

1 Introduction 1
1.1 Goals . 1
1.2 Scope . 1
1.3 Core Concepts . 2

2 Getting Started 5
2.1 Setup . 5
2.2 Your first package . 5

3 Packaging Formats 7
3.1 Universal Plugin . 8
3.2 Linux Plugin . 15
3.3 Debian Plugin . 21
3.4 Rpm Plugin . 25
3.5 Docker Plugin . 31
3.6 Windows Plugin . 37
3.7 JDKPackager Plugin . 40
3.8 GraalVM Native Image Plugin . 44

4 Project Archetypes 47
4.1 Java Application Archetype . 47
4.2 Java Server Application Archetype . 54
4.3 Systemloaders . 59
4.4 Configuration Archetypes . 62
4.5 Jlink Plugin . 62
4.6 Archetype Cheatsheet . 64

5 Recipes 69
5.1 Custom Package Formats . 69
5.2 Dealing with long classpaths . 73
5.3 Play 2 Packaging . 74
5.4 Deployment . 75
5.5 Scala JS packaging . 78
5.6 Build the same package with different configs . 78
5.7 Embedding JVM in Universal . 81
5.8 Setting the umask for your process . 82

i

ii

CHAPTER 1

Introduction

SBT native packager lets you build application packages in native formats and offers different archetypes for common
configurations, such as simple Java apps or server applications.

This section provides a general overview of native packager and its core concepts. If you want a quick start, go to the
getting started section. However we recommend understanding the core concepts, which will help you to get started
even quicker.

1.1 Goals

Native packager defines project goals in order to set expectations and scope for this project.

1. Native formats should build on their respective platform This allows native packager to support a wide
range of formats as the packaging plugin serves as a wrapper around the actual packaging tool. How-
ever, alternative packaging plugins maybe provided if a java/scala implementation exists. As an example
debian packages should always build on debian systems, however native packager provides an additional
plugin that integrates JDeb for a platform independent packaging strategy.

2. Provide archetypes for zero configuration builds While packaging plugins provide the how a package is cre-
ated, archetypes provide the configuration for what gets packaged. Archetypes configure your build to
create a package for a certain purpose. While an archetype may not support all packaging formats, it
should work without configuration for the supported formats.

3. Enforce best-practices There is no single way to create a package. Native packager tries to create packages
following best practices, e.g. for file names, installation paths or script layouts.

1.2 Scope

While native packager provides a wide range of formats and archetype configurations, its scope is relatively narrow.
Native packager only takes care of packaging, the act of putting a list of mappings (source file to install target path)
into a distinct package format (zip, rpm, etc.).

1

sbt-native-packager, Release 1.0a1

Archetypes like Java Application Archetype or Java Server Application Archetype only add additional files to the
mappings enriching the created package, but they don’t provide any new features for native-packager core function-
ality. Much like the packaging format plugins, the archetypes rely on functionality already available on your deploy
target.

These things are out of native packagers scope

1. Providing application lifecyle management. The Java Server Application Archetype provides configurations
for common system-loaders like SystemV, Upstart or SystemD. However creating a custom solution which
includes stop scripts, PID management, etc. are not part of native packager.

2. Providing deployment configurations Native packager produces artifacts with the packageBin task. What
you do with these is part of another step in your process.

1.3 Core Concepts

Native packager is based on a few simple concepts. If you understand these, you will be able to customize your build,
create own packaging formats and deploy more effectively.

1. Separation of concerns with two kinds of plugins

• format plugins define how a package is created

• archetype plugins define what a package should contain

2. Mappings define how your build files should be organized on the target system.

Mappings are a Seq[(File, String)], which translates to “a list of tuples, where each tuple
defines a source file that gets mapped to a path on the target system”.

The following sections describe these concepts in more detail.

1.3.1 Format Plugins

Format plugins provide the implementation to create package, the how a package is created. For example the Debian
Plugin provides a way to package debian packages. Each format plugin has its own documentation. Each plugin
provides a common set of features:

1. Provide a new configuration scope Formats define their own configuration scope to be able to customize every
shared setting or task.

2. Provide package format related settings and tasks Each format plugin may add additional settings or tasks
that are only used by this plugin. Normally these settings start with the plugin name, e.g. rpmXYZ.

3. Implement package task packageBin or publishLocal tasks provide the actual action to create a pack-
age.

By enabling a format plugin only with

enablePlugins(SomePackageFormatPlugin)

the resulting package will be empty because a format plugin doesn’t provide any configuration other than the default
settings for the format plugin’s specific settings.

2 Chapter 1. Introduction

sbt-native-packager, Release 1.0a1

1.3.2 Archetype Plugins

While format plugins provide the how, archetypes provide the what gets packaged. An archetype changes the config-
uration in all supported package format scopes; they don’t add configuration scopes.

A full list of archetypes can be found here.

An archetype may provide the following:

1. Archetype related settings and tasks

2. New files in your package

By enabling an archetype plugin with

enablePlugins(SomeArchetypePlugin)

all configuration changes will be applied as well as all supported format plugins will be enabled.

Tip: An archetype plugin should be the starting point for creating packages!

1.3.3 Mappings

Mappings are the heart of native packager. This task defines what files in your build should be mapped where on the
target system. The type signature for the mappings task is

mappings: TaskKey[Seq[(File, String)]]

The file part of the tuple must be available during the packaging phase. The String part represents the path inside the
installation directory.

The Universal Plugin represents the base for all other plugins. It has a big section on how to customize mappings.

1.3.4 Architecture

The architecture can be summarized with this diagram

When using the full power of the plugin, all of the packaging is driven from the mappings in Universal
setting, which defines what files will be included in the package. These files are automatically moved around for the
appropriate native packaging as needed.

1.3. Core Concepts 3

sbt-native-packager, Release 1.0a1

4 Chapter 1. Introduction

CHAPTER 2

Getting Started

2.1 Setup

Sbt-native-packager is an AutoPlugin. Add it to your plugins.sbt

addSbtPlugin("com.typesafe.sbt" % "sbt-native-packager" % "x.y.z")

2.1.1 Native Tools

Depending on the package format you want to create, you may need additional tools available on your machine. Each
packaging format has a requirements section.

2.2 Your first package

Native packager provides packaging format plugins and archetype plugins to separate configuration and actual pack-
aging. To get started we use the basic Java Application Archetype. For more archetypes see the archetypes page.

In your build.sbt you need to enable the archetype like this

enablePlugins(JavaAppPackaging)

This will also enable all supported format plugins.

2.2.1 Run the app

Native packager can stage your app so you can run it locally without having the app packaged.

sbt stage
./target/universal/stage/bin/<your-app>

5

sbt-native-packager, Release 1.0a1

2.2.2 Create a package

We can generate other packages via the following tasks. Note that each packaging format may needs some additional
configuration and native tools available. Here’s a complete list of current formats.

• universal:packageBin - Generates a universal zip file

• universal:packageZipTarball - Generates a universal tgz file

• debian:packageBin - Generates a deb

• docker:publishLocal - Builds a Docker image using the local Docker server

• rpm:packageBin - Generates an rpm

• universal:packageOsxDmg - Generates a DMG file with the same contents as the universal zip/tgz.

• windows:packageBin - Generates an MSI

6 Chapter 2. Getting Started

CHAPTER 3

Packaging Formats

There is a plugin for each packaging format that native-packager supports. These plugins can rely on each other to
reuse existing functionality. Currently the autoplugin hierarchy looks like this

SbtNativePackager
+
|
|

+-------+ Universal +--------+-------------+----------------+
+			
+ + + + +

Docker +-+ Linux +-+ Windows JDKPackager GraalVM native-image
| |
| |
+ +

Debian RPM

If you enable the DebianPlugin all plugins that depend on the DebianPlugin will be enabled as well
(LinuxPlugin, UniversalPlugin and SbtNativePackager).

Each packaging format defines its own scope for settings and tasks, so you can customize your build on a packaging
level. The settings and tasks must be explicitly inherited. For the mappings task this looks like this

mappings in Docker := (mappings in Universal).value

To learn more about a specific plugin, read the appropriate doc.

Tip: You may also need to read the docs of the dependent plugins. We recommend always that you read the Universal
Plugin documentation because all plugins rely on this one.

7

sbt-native-packager, Release 1.0a1

3.1 Universal Plugin

The Universal Plugin creates a generic, or “universal” distribution package. This is called “universal packaging.”
Universal packaging just takes a plain mappings configuration and generates various package files in the output
format specified. Because it creates a distribution that is not tied to any particular platform it may require manual labor
(more work from your users) to correctly install and set up.

3.1.1 Related Plugins

• Linux Plugin

• Docker Plugin

• Windows Plugin

3.1.2 Requirements

Depending on what output format you want to use, you need one of the following applications installed

• zip (if native)

• gzip

• xz

• tar

• hdiutil (for dmg)

3.1.3 Build

There is a task for each output format

Zip

sbt universal:packageBin

Tar

sbt universal:packageZipTarball

Xz

sbt universal:packageXzTarball

Dmg

sbt universal:packageOsxDmg

Required Settings

The Universal Plugin has no mandatory fields.

Enable the universal plugin

8 Chapter 3. Packaging Formats

sbt-native-packager, Release 1.0a1

enablePlugins(UniversalPlugin)

3.1.4 Configurations

Settings and Tasks inherited from parent plugins can be scoped with Universal.

Universal packaging provides three Configurations:

universal For creating full distributions

universal-docs For creating bundles of documentation

universal-src For creating bundles of source.

Here is how the values for name and packageName are used by the three configurations:

name in Universal := name.value

name in UniversalDocs := (name in Universal).value

name in UniversalSrc := (name in Universal).value

packageName in Universal := packageName.value

3.1.5 Settings

As we showed before, the universal packages are completely configured through the use of mappings. Simply specify
the desired mappings for a given configuration. For example:

mappings in Universal += (packageBin in Compile).value -> "lib/foo.jar"

However, sometimes it may be advantageous to customize the files for each archive separately. For example, perhaps
the .tar.gz has an additional README plaintext file in addition to a README.html. To add this just to the .tar.gz file,
use the task-scope feature of sbt:

mappings in Universal in packageZipTarball += file("README") -> "README"

Besides mappings, the name, sourceDirectory and target configurations are all respected by universal
packaging.

Note: The Universal plugin will make anything in a bin/ directory executable. This is to work around issues
with JVM and file system manipulations.

3.1.6 Tasks

universal:package-bin Creates the zip universal package.

universal:package-zip-tarball Creates the tgz universal package.

universal:package-xz-tarball Creates the txz universal package. The xz command can get
better compression for some types of archives.

universal:package-osx-dmg Creates the dmg universal package. This only work on macOS or
systems with hdiutil.

universal-docs:package-bin Creates the zip universal documentation package.

3.1. Universal Plugin 9

sbt-native-packager, Release 1.0a1

universal-docs:package-zip-tarball Creates the tgz universal documentation package.

universal-docs:package-xz-tarball Creates the txz universal documentation package.
The xz command can get better compression for some types of archives.

3.1.7 Customize

Universal Archive Options

You can customize the commandline options (if used) for the different zip formats. If you want to force local for the
tgz output add this line:

universalArchiveOptions in (Universal, packageZipTarball) := Seq("--force-local", "-
→˓pcvf")

This will set the cli options for the packageZipTarball task in the Universal plugin to use the options
--force-local and pcvf. Be aware that the above line will overwrite the default options. You may want to
prepend your options, doing something like:

universalArchiveOptions in (Universal, packageZipTarball) :=
(Seq("--exclude", "*~") ++ (universalArchiveOptions in (Universal,

→˓packageZipTarball)).value)

Currently, these task can be customized:

universal:package-zip-tarball universalArchiveOptions in (Universal, packageZipTarball)

universal:package-xz-tarball universalArchiveOptions in (Universal, packageXzTarball)

Getting Started with Universal Packaging

By default, all files found in the src/universal directory are included in the distribution. So, the first step in
creating a distribution is to place files in this directory and organize them as you’d like in them to be in the distributed
package. If your output format is a zip file, for example, although the distribution will consist of just one zip file, the
files and directories within that zip file will reflect the same organization and structure as src/universal.

To add files generated by the build task to a distribution, simply add a mapping to the mappings in Universal
setting. Let’s look at an example where we add the packaged jar of a project to the lib folder of a distribution:

mappings in Universal += {
val jar = (packageBin in Compile).value
jar -> ("lib/" + jar.getName)

}

The above does two things:

1. It depends on packageBin in Compile which will generate a jar file form the project.

2. It creates a mapping (a Tuple2[File, String]) which denotes the file and the location in the distribution
as a string.

You can use this pattern to add anything you desire to the package.

Note

If you are using an application archetype or the playframework, the jar mapping is already
defined and you should not include these in your build.sbt. issue 227

10 Chapter 3. Packaging Formats

https://github.com/sbt/sbt-native-packager/issues/227

sbt-native-packager, Release 1.0a1

Universal Conventions

This plugin has a set of conventions for universal packages that enable the automatic generation of native packages.
The universal convention has the following package layout:

bin/
<scripts and things you want on the path>

lib/
<shared libraries>

conf/
<configuration files that should be accessible using platform standard config

→˓locations.>
doc/

<Documentation files that should be easily accessible. (index.html treated
→˓specially)>

If your plugin matches these conventions, you can enable the settings to automatically generate native layouts based
on your universal package. To do so, add the following to your build.sbt:

mapGenericFilesToLinux

mapGenericFilesToWinows

In Linux, this mapping creates symlinks from platform locations to the install location of the universal package. For
example, given the following packaging:

bin/
cool-tool

lib/
cool-tool.jar

conf/
cool-tool.conf

The mapGenericFilesToLinux settings will create the following package (symlinks denoted with ->):

/usr/share/<pkg-name>/
bin/

cool-tool
lib/

cool-tool.jar
conf/

cool-tool.conf
/usr/bin/

cool-tool -> /usr/share/<package-name>/bin/cool-tool
/etc/<pkg-name> -> /usr/share/<package-name>/conf

The mapGenericFilesToWindowswill construct an MSI that installs the application in <Platform Program
Files>\<Package Name> and include the bin directory on Windows PATH environment variable (optionally
disabled).

While these mappings provide a great start to nice packaging, it still may be necessary to customize the native pack-
aging for each platform. This can be done by configuring those settings directly.

For example, even using generic mapping, debian has a requirement for changelog files to be fully formed. Using the
above generic mapping, we can configure just this changelog in addition to the generic packaging by first defining a
changelog in src/debian/changelog and then adding the following setting:

3.1. Universal Plugin 11

sbt-native-packager, Release 1.0a1

linuxPackageMappings in Debian +=
(packageMapping(
((sourceDirectory in Debian).value / "changelog") -> "/usr/share/doc/sbt/

→˓changelog.gz"
) withUser "root" withGroup "root" withPerms "0644" gzipped) asDocs()

Notice how we’re only modifying the package mappings for Debian linux packages.

For more information on the underlying packaging settings, see Windows Plugin and Linux Plugin documentation.

Change/Remove Top Level Directory in Output

Your output package (zip, tar, gz) by default contains a single folder with your application. If you want to change this
folder or remove this top level directory completely use the topLevelDirectory setting.

Removing the top level directory

topLevelDirectory := None

Changing it to another value, e.g. the packageName without the version

topLevelDirectory := Some(packageName.value)

Or just a plain hardcoded string

topLevelDirectory := Some("awesome-app")

Skip packageDoc task on stage

The stage task forces a javadoc.jar build, which could slow down stage tasks performance. In order to deactivate
this behaviour, add this to your build.sbt

mappings in (Compile, packageDoc) := Seq()

Source issue 651.

MappingsHelper

The MappingsHelper class provides a set of helper functions to make mapping directories easier.

sbt 0.13.5 and plugin 1.0.x or higher

import NativePackagerHelper._

plugin version 0.8.x or lower

import com.typesafe.sbt.SbtNativePackager._
import NativePackagerHelper._

You get a set of methods which will help you to create mappings very easily.

12 Chapter 3. Packaging Formats

https://github.com/sbt/sbt-native-packager/issues/651
http://www.scala-sbt.org/sbt-native-packager/latest/api/#com.typesafe.sbt.packager.MappingsHelper\protect \T1\textdollar

sbt-native-packager, Release 1.0a1

mappings in Universal ++= directory("src/main/resources/cache")

mappings in Universal ++= contentOf("src/main/resources/docs")

mappings in Universal ++= directory(sourceDirectory.value / "main" / "resources" /
→˓"cache")

mappings in Universal ++= contentOf(sourceDirectory.value / "main" / "resources" /
→˓"docs")

Mapping Examples

SBT provides the IO and Path APIs, which help make defining custom mappings easy. The files will appear in the
generate universal zip, but also in your debian/rpm/msi/dmg builds as described above in the conventions.

The packageBin in Compile dependency is only needed if your files get generated during the packageBin
command or before. For static files you can remove it.

Mapping a complete directory

There are some helper methods so you can create a mapping for a complete directory:

For static content, you can just add the directory to the mapping:

mappings in Universal ++= directory("SomeDirectoryNameToInclude")

If you want to add everything in a directory where the path for the directory is dynamic, e.g. the scala-2.10/api
directory that is nested under in the target directory, and target is defined in a task:

(mappings in Universal) ~= (_ ++ directory(target.value / "scala-2.10" / "api"))

You can also use the following approach if, for example, you need more flexibility:

(mappings in Universal) ++= {
val dir = target.value / "scala-2.10" / "api"
(dir ** AllPassFilter) pair relativeTo(dir.getParentFile)

}

Here is what happens in this code:

dir.*** is a PathFinder method that creates a sequence of every file under a directory, including the
directory itself.

relativeTo() returns a String that is the path relative to whatever you pass to it.

dir.getParentFile returns the parent of dir. In this example, it’s the parent directory of whatever
target is.

pair is a PathFinder method that takes a function and applies it to every file (in the sequence), and returns
a (file, function-result) tuple.

Putting it all together, this creates a map of every file under target/scala-2.10/api (including the directory
target/scala-2.10/api itself) with a string that is the path to the parent of target. This is a mapping for
every file and a string that tells the universal packager where it is located.

For example:

if target = /Users/you/dev/fantasticApp/src/scala/fantasticApp-0.1-HOTFIX01

3.1. Universal Plugin 13

http://www.scala-sbt.org/0.13.1/docs/Detailed-Topics/Paths.html
http://www.scala-sbt.org/0.13.1/docs/Detailed-Topics/Paths.html
http://www.scala-sbt.org/0.13.1/docs/Detailed-Topics/Paths.html#path-finders
http://www.scala-sbt.org/0.13.1/docs/Detailed-Topics/Paths.html#path-finders

sbt-native-packager, Release 1.0a1

and fantasticApp-0.1-HOTFIX01/scala-2.10/api/ contains the files

somedata.csv
README

Then the code above will produce this mapping:

((/Users/you/dev/fantasticApp/src/scala/fantasticApp-0.1-HOTFIX01,fantasticApp-0.1-
→˓HOTFIX01),

(/Users/you/dev/fantasticApp/src/scala/fantasticApp-0.1-HOTFIX01/README,fantasticApp-
→˓0.1-HOTFIX01/README),

(//Users/you/dev/fantasticApp/src/scala/fantasticApp-0.1-HOTFIX01/somedata.csv,
→˓fantasticApp-0.1-HOTFIX01/somedata.csv))

Note that the first item of each pair is the full path to where the file exists on the system /Users/you....., and
the second part is the just the path starting after .../scala. That second part is what is returned from <each
file>.relativeTo(dir.getParentFile).

Mapping the content of a directory (excluding the directory itself)

mappings in Universal ++= {
val dir = target.value / "scala-2.10" / "api"
(dir ** AllPassFilter --- dir) pair relativeTo(dir)

}

The dir gets excluded and is used as root for relativeTo(dir).

Filter/Remove mappings

If you want to remove mappings, you have to filter the current list of mappings. This example demonstrates how to
build a fat jar with sbt-assembly, but using all the convenience of the sbt native packager archetypes.

tl;dr how to remove stuff

// removes all jar mappings in universal and appends the fat jar
mappings in Universal := {

// universalMappings: Seq[(File,String)]
val universalMappings = (mappings in Universal).value
val fatJar = (assembly in Compile).value

// removing means filtering
// notice the "!" - it means NOT, so only keep those that do NOT have a name

→˓ending with "jar"
val filtered = universalMappings filter {

case (file, name) => ! name.endsWith(".jar")
}

// add the fat jar to our sequence of things that we've filtered
filtered :+ (fatJar -> ("lib/" + fatJar.getName))

}

The complete build.sbt should contain these settings if you want a single assembled fat jar.

14 Chapter 3. Packaging Formats

https://twitter.github.io/scala_school/collections.html#filter

sbt-native-packager, Release 1.0a1

// the assembly settings
assemblySettings

// we specify the name for our fat jar
jarName in assembly := "assembly-project.jar"

// using the java server for this application. java_application would be fine, too
packageArchetype.java_server

// removes all jar mappings in universal and appends the fat jar
mappings in Universal := {

val universalMappings = (mappings in Universal).value
val fatJar = (assembly in Compile).value
val filtered = universalMappings filter {

case (file, name) => ! name.endsWith(".jar")
}
filtered :+ (fatJar -> ("lib/" + fatJar.getName))

}

// the bash scripts classpath only needs the fat jar
scriptClasspath := Seq((jarName in assembly).value)

3.2 Linux Plugin

The native packager plugin is designed so that linux packages look similar but can contain distribution specific infor-
mation.

Note: The linux plugin depends on the Universal Plugin.

3.2.1 Related Plugins

• Debian Plugin

• Rpm Plugin

3.2.2 Build

The linux plugin is just a top level plugin for linux packaging formats. The Linux scope contains settings which can
be used by the plugins depending on the linux plugin.

sbt "show linux:linuxPackageMappings"

Required Settings

A linux package needs some mandatory settings to be valid. Make sure you have these settings in your build:

name := "Linux Example"

version := "1.0"

(continues on next page)

3.2. Linux Plugin 15

sbt-native-packager, Release 1.0a1

(continued from previous page)

maintainer := "Max Smith <max.smith@yourcompany.io>"

packageSummary := "Hello World Debian Package"

packageDescription := """A fun package description of our software,
with multiple lines."""

Enable the linux plugin to activate the native package implementation.

enablePlugins(LinuxPlugin)

3.2.3 Configurations

Settings and tasks inherited from parent plugins can be scoped with Linux.

name in Linux := name.value

3.2.4 Settings

The required fields for any linux distribution are:

name in Linux The name given the package for installation.

maintainer The name of the maintainer of the package (important for ownership and signing).

packageSummary A one-sentence short summary of what the package does.

packageDescription A longer description of what the package does and what it includes.

linuxPackageMappings A list of files and their desired installation locations for the package, as
well as other metainformation.

fileDescriptorLimit Maximum number of open file descriptors for the spawned application. The
default value is 1024.

3.2.5 Customize

Package Mappings

Most of the work in generating a linux package is constructing package mappings. These ‘map’ a file to a location
on disk where it should reside as well as information about that file. Package mappings allow the specification of file
ownership, permissions and whether or not the file can be considered “configuration”.

Note that while the sbt-native-packager plugin allows you to specify all of this information, not
all platforms will make use of the information. It’s best to be specific about how you want files handled
and run tests on each platform you wish to deploy to.

A package mapping takes this general form

(packageMapping(
file -> "/usr/share/man/man1/sbt.1.gz"

) withPerms "0644" gzipped) asDocs()

Let’s look at each of the methods supported in the packageMapping ‘library’.

16 Chapter 3. Packaging Formats

sbt-native-packager, Release 1.0a1

packageMapping(mappings: (File, String)*) This method takes a variable number of
File -> String pairs. The File should be a locally available file that can be bundled, and the
String is the installation location on disk for that file. This returns a new PackageMapping
that supports the remaining methods.

withPerms(mask: String) This function adjusts the installation permissions of the associated
files. The flags passed should be of the form of a mask, e.g. 0755.

gzipped This ensures that the files are written in compressed format to the destination. This is a
convenience for distributions that want files zipped.

asDocs This denotes that the mapped files are documentation files. Note: I believe these are only used
for ‘‘RPM‘‘s.

withConfig(value:String="true") This denotes whether or not a %config attribute is at-
tached to the given files in the generated rpm SPEC. Any value other than "true" will be
placed inside the %config() definition. For example withConfig("noreplace") results
in %config(noreplace) attribute in the rpm spec.

withUser(user:String) This denotes which user should be the owner of the given files in the
resulting package.

withGroup(group:String) This denotes which group should be the owner of the given files in the
resulting package.

The LinuxPackageMapping Models

All classes are located in the com.typesafe.sbt.packager.linux package. So if you want to create in-
stances yourself you have to add import com.typesafe.sbt.packager.linux._ to your build file.

A LinuxPackageMapping contains the following fields:

mappings: Traversable[(File, String)] A list of mappings aggregated by this Linux-
PackageMapping

fileData: LinuxFileMetaData Permissions for all the defined mappings. Default = “root:root
755”

zipped: Boolean Are the mappings zipped? Default = false

All mappings are stored in the task linuxPackageMappingswhich returns a Seq[LinuxPackageMapping].
To display the contents (value), open the sbt console and call

show linuxPackageMappings

The LinuxFileMetaData has the following fields

user: String The user owning all the mappings. Default = “root”

group: String The group owning all the mappings. Default = “root”

permissions: String Access permissions for all the mappings. Default = “755”

config: String Are the mappings config files. Default = “false”

docs: Boolean Are the mappings docs. Default = false

Last but not least there are the linuxPackageSymlinks, which encapsulate symlinks on your destination system.
A LinuxSymlink contains only two fields

link: String The actual link that points to destination

destination: String The link destination

3.2. Linux Plugin 17

sbt-native-packager, Release 1.0a1

You can see all currently configured symlinks with this simple command. linuxPackageSymlinks is just a
Seq[LinuxSymlink]

show linuxPackageSymlinks

Modifying Mappings in General

Adding, filtering and altering mappings are always simple methods on a Seq[LinuxPackageMapping] sequence.
This section shows you the general way to add, modify, or filter mappings. The following sections have specific
examples.

The basic construct for adding a mapping is

// simple
linuxPackageMappings += packageMapping((theFile, "/absolute/path/somefile.txt"))

// specialized
linuxPackageMappings += packageMapping((theFile, "/absolute/path/somefile.txt"))
→˓withPerms("644") asDocs()

To filter or modify a mapping, you generally create a new mapping by copying an existing one (or occasionally by
creating a new blank one), then filter or modify it, and then return that filtered or modified mapping. Here’s an example
that shows a number of things you can possibly do. See the next section for specifc examples. (Basic scala collections
operations are used in the code. Here is an explanation of the filter method.)

// sbt 0.13.0 syntax
linuxPackageMappings := {

// mappings: Seq[LinuxPackageMapping]
val mappings = linuxPackageMappings.value

// this process will must return another Seq[LinuxPackageMapping]
mappings map { linuxPackage =>

// each mapping element is a Seq[(java.io.File, String)]
val filtered = linuxPackage.mappings map {

case (file, name) => file -> name // alter stuff here
} filter {

case (file, name) => true // filter anything from the mapping where the
→˓case (file, name) => true pattern is satisfied

}

// Copy values from the mapping: (Include only what you need)
val fileData = linuxPackage.fileData.copy(

user = "new user",
group = "another group",
permissions = "444",
config = "false",
docs = false

)

// returns a fresh LinuxPackageMapping based on the above
linuxPackage.copy(

mappings = filtered,
fileData = fileData

)
} filter {

(continues on next page)

18 Chapter 3. Packaging Formats

https://twitter.github.io/scala_school/collections.html#filter

sbt-native-packager, Release 1.0a1

(continued from previous page)

linuxPackage => linuxPackage.mappings.nonEmpty // return all mappings that
→˓are nonEmpty (this effectively removes all empty linuxPackageMappings)

}
}

// sbt 0.12.x syntax
linuxPackageMappings <<= linuxPackageMappings map { mappings =>

/* stuff. see above */
mappings

}

The ordering in which you apply the tasks is important.

Add Mappings

To add an arbitrary file in your build path

linuxPackageMappings += {
val file = sourceDirectory.value / "resources" / "somefile.txt"
packageMapping((file, "/absolute/path/somefile.txt"))

}

linuxPackageMappings can be scoped to Rpm or Debian if you want to add mappings only for a single pack-
aging type.

linuxPackageMappings in Debian += {
val file = sourceDirectory.value / "resources" / "debian-somefile.txt"
packageMapping((file, "/absolute/path/somefile.txt"))

}

linuxPackageMappings in Rpm += {
val file = sourceDirectory.value / "resources" / "rpm-somefile.txt"
packageMapping((file, "/absolute/path/somefile.txt"))

}

Filter/Remove Mappings

If you want to remove some mappings you have to filter the current list of linuxPackageMappings. As
linuxPackageMappings is a task, the order of your settings is important. Here are some examples on how
to filter mappings.

// this is equal to
// linuxPackageMappings <<= linuxPackageMappings map { mappings => /* stuff */
→˓mappings }
linuxPackageMappings := {

// first get the current mappings. mapping is of type Seq[LinuxPackageMapping]
val mappings = linuxPackageMappings.value

// map over the mappings if you want to change them
mappings map { mapping =>

// we remove everything besides files that end with ".conf"
val filtered = mapping.mappings filter {

case (file, name) => name endsWith ".conf" // only elements where this
→˓is true are kept (continues on next page)

3.2. Linux Plugin 19

sbt-native-packager, Release 1.0a1

(continued from previous page)

}

// now we copy the mapping but replace the mappings
mapping.copy(mappings = filtered)

} filter {
// only keep those mappings that are nonEmpty (_.mappings.nonEmpty == true)
_.mappings.nonEmpty

}
}

Alter LinuxPackageMapping

To alter the permissions for all LinuxPackageMapping s that match a specific criteria:

// Altering permissions for configs
linuxPackageMappings := {

val mappings = linuxPackageMappings.value
// Changing the group for all configs
mappings map {

case linuxPackage if linuxPackage.fileData.config equals "true" =>
// altering the group
val newFileData = linuxPackage.fileData.copy(

group = "appdocs"
)
// altering the LinuxPackageMapping
linuxPackage.copy(

fileData = newFileData
)

case linuxPackage => linuxPackage
}

}

Alter LinuxSymlinks

To alter the permissions for all LinuxPackageMapping s that match a specific criteria:

// The same as linuxPackageMappings
linuxPackageSymlinks := {

val links = linuxPackageSymlinks.value

links filter { /* remove stuff */ } map { /* change stuff */}
}

Add Empty Directories

There is a special helper function that allows you to add empty directories to the package mappings. This might be
useful if the service needs some location to store files.

// Add an empty folder to mappings
linuxPackageMappings += packageTemplateMapping(s"/usr/share/${name.value}/lib/native
→˓")() withUser(name.value) withGroup(name.value)

20 Chapter 3. Packaging Formats

sbt-native-packager, Release 1.0a1

Man Pages

There are many ways to document your projects, and many ways to expose them. While the native packager places no
limit on WHAT is included in a package, there are some things which receive special treatment.

Specifically: linux man pages.

To create a linux man page for the application, let’s create a src/linux/usr/share/man/man1/
example-cli.1 file

.\" Process this file with

.\" groff -man -Tascii example-cli.1

.\"

.TH EXAMPLE_CLI 1 "NOVEMBER 2011" Linux "User Manuals"

.SH NAME
example-cli \- Example CLI
.SH SYNOPSIS
.B example-cli [-h]

Notice the location of the file. Any file under src/linux is automatically included, relative to /, in linux packages
(deb, rpm). That means the man file will not appear in the universal package (confusing linux users).

Now that the man page is created, we can use a few tasks provided to view it in sbt. Let’s look in the sbt console

sbt generateManPages

We can use this task to work on the man pages and ensure they’ll look OK. You can also directly use groff to view
changes in your man pages.

In addition to providing the means to view the man page, the native packager will also automatically gzip man pages
for the distribution. The resulting man page is stored in /usr/share/man/man1/example-cli.1.gz in linux
distributions.

3.3 Debian Plugin

The debian package specification is very robust and powerful. If you wish to do any advanced features, it’s best to
understand how the underlying packaging system works. Debian Binary Package Building HOWTO by Chr. Clemens
Lee is an excellent tutorial.

SBT Native Packager provides two ways to build debian packages:

1. A native implementation, where you need dpkg-deb installed, or

2. A java, platform independent approach with jdeb.

By default the native implementation is activated.

Note: The debian plugin depends on the Linux Plugin.

3.3.1 Requirements

If you use the native debian package implementation you need the following applications installed:

• dpkg-deb

• dpkg-sig

3.3. Debian Plugin 21

http://tldp.org/HOWTO/html_single/Debian-Binary-Package-Building-HOWTO/
https://github.com/tcurdt/jdeb

sbt-native-packager, Release 1.0a1

• dpkg-genchanges

• lintian

• fakeroot

3.3.2 Build

sbt debian:packageBin

Required Settings

A debian package needs some mandatory settings to be valid. Make sure you have these settings in your build:

name := "Debian Example"

version := "1.0"

maintainer := "Max Smith <max.smith@yourcompany.io>"

packageSummary := "Hello World Debian Package"

packageDescription := """A fun package description of our software,
with multiple lines."""

It’s not exactly mandatory, but still highly recommended to add relevant JRE dependency, for example:

debianPackageDependencies := Seq("java8-runtime-headless")

Enable the debian plugin to activate the native package implementation.

enablePlugins(DebianPlugin)

JRE Dependencies

By default, a Debian package would have no dependencies, even for the Java Runtime Environment (JRE). A startup
script will seek JRE in several popular locations, and, JRE is not found, the following message would be displayed:

No java installations was detected.
Please go to http://www.java.com/getjava/ and download

To build a Debian package that integrates properly with Debian repository environment, i.e. depends on a package that
provides JRE, one needs to specify JRE dependency using debianPackageDependencies. Debian (Ubuntu and
compatible distributions as well) provides two families of virtual packages to do that:

javaN-runtime Regular (full) JRE packages, with GUI support. Use this for applications requiring
AWT/Swing support, OpenGL, sound, etc.

javaN-runtime-headless Minimal JRE packages without GUI support, useful for server instal-
lation to avoid pulling large set of X.org-related packages. Use this for console-only applications,
services, networked / web applications, etc.

N in javaN should be replaced with minimal JRE version required by the packaged application. It usually depends
on a Scala version used:

22 Chapter 3. Packaging Formats

sbt-native-packager, Release 1.0a1

• Scala 2.11.x or earlier requires Java 6

• Scala 2.12.x requires Java 8

Note that these are virtual packages, which are provided by a set of real packages. This means, for example, while
installing a .deb package that depends on java6-runtime-headless:

• If end-user has no suitable JRE installed, it would automatically pull and install some “sane default” package
which provides thing functionality (typically, it would be openjdk-8-jre-headless).

• If end-user does not like default suggested JRE for some reason, it’s possible to install any alternative imple-
mentation.

• If end-user has some existing JRE installation that is sufficient to play that role (for example, openjdk-9-jre,
which provides, along others, java8-runtime-headless too), it would be used.

This dependency works equally well with both free/libre OpenJDK packages supplied by Debian, and non-free JDKs
supplied by Oracle and packaged as .deb using make-jpkg utility from Debian’s java-package.

Native packaging

Since JARs are by default already compressed, DebianPlugin disables additional compression of the debian package
contents.

To compress the debian package, override debianNativeBuildOptions with options for dpkg-deb.

debianNativeBuildOptions in Debian := Nil // dpkg-deb's default compression
→˓(currently xz)

debianNativeBuildOptions in Debian := Seq("-Zgzip", "-z3") // gzip compression at
→˓level 3

Note that commit cee091c released in 1.1.1 disables package re-compression by default. While this works great with
tools such as apt and dpkg, un-compressed package installation is bugged in python-apt 8.8 series. This bug prevents
installation of the generated debian package in the following configuration:

• installation using python-apt module, used by Ansible and SaltStack for example,

• being on python-apt 8.8 series that’s on Debian Wheezy and perhaps older

It will fail with an error message like:

E: This is not a valid DEB archive, it has no 'data.tar.gz', 'data.tar.bz2' or 'data.
→˓tar.lzma' member

Solutions include:

• upgrading to Debian Jessie,

• upgrading python-apt, note that no official backport is known

• re-enabling package re-compression in sbt-native-packager, by overridding debianNativeBuildOptions as de-
scribed above.

Java based packaging

If you want to use the java based implementation, enable the following plugin:

enablePlugins(JDebPackaging)

3.3. Debian Plugin 23

https://wiki.debian.org/JavaPackage
https://packages.debian.org/java-package
http://man7.org/linux/man-pages/man1/dpkg-deb.1.html
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=718330

sbt-native-packager, Release 1.0a1

and this to your plugins.sbt:

libraryDependencies += "org.vafer" % "jdeb" % "1.3" artifacts (Artifact("jdeb", "jar",
→˓ "jar"))

JDeb is a provided dependency. You have to explicitly add it on your own. It brings a lot of dependencies that could
slow your build times. This is the reason the dependency is marked as provided.

3.3.3 Configurations

Settings and Tasks inherited from parent plugins can be scoped with Debian.

linuxPackageMappings in Debian := linuxPackageMappings.value

3.3.4 Settings

Debian requires the following specific settings:

name in Debian The name of the package for debian (if different from general linux name).

version in Debian The debian-friendly version of the package. Should be of the form x.y.
z-build-aa.

debianPackageConflicts in Debian The list of debian packages that this package conflicts
with.

debianPackageDependencies in Debian The list of debian packages that this package de-
pends on.

debianPackageProvides in Debian The list of debian packages that are provided by this pack-
age.

debianPackageRecommends in Debian The list of debian packages that are recommended to
be installed with this package.

linuxPackageMappings in Debian Debian requires a /usr/share/doc/{package
name}/changelog.gz file that describes the version changes in this package. These should be
appended to the base linux versions.

maintainerScripts in Debian (debianMaintainerScripts) DEPRECATED use
maintainerScripts in Debian instead. These are the packaging scripts themselves
used by dpkg-deb to build your debian. These scripts are used when installing/uninstalling a
debian, like prerm, postinstall, etc. These scripts are placed in the DEBIAN file when building.
Some of these files can be autogenerated, for example when using a package archetype, like
server_application. However, any autogenerated file can be overridden by placing your own files in
the src/debian/DEBIAN directory.

changelog in Debian This is the changelog used by dpkg-genchanges to create the .changes
file. This will allow you to upload the debian package to a mirror.

3.3.5 Tasks

The Debian support grants the following commands:

debian:package-bin Generates the .deb package for this project.

24 Chapter 3. Packaging Formats

sbt-native-packager, Release 1.0a1

debian:lintian Generates the .deb file and runs the lintian command to look for issues in the
package. Useful for debugging.

debian:gen-changes Generates the .changes, and therefore the .deb package for this project.

3.3.6 Customize

This section contains examples of how you can customize your debian build.

Customizing Debian Metadata

A Debian package provides metadata, which includes dependencies and recommendations. This example adds a
dependency on java and recommends a git installation.

debianPackageDependencies in Debian ++= Seq("java2-runtime", "bash (>= 2.05a-11)")

debianPackageRecommends in Debian += "git"

Hook Actions into the Debian Package Lifecycle

To hook into the debian package lifecycle (https://wiki.debian.org/MaintainerScripts) you can add preinst ,
postinst , prerm and/or postrm scripts. Just place them into src/debian/DEBIAN. Or you can do it pro-
grammatically in your build.sbt. This example adds actions to preinst and postinst:

import DebianConstants._
maintainerScripts in Debian := maintainerScriptsAppend((maintainerScripts in Debian).
→˓value)(
Preinst -> "echo 'hello, world'",
Postinst -> s"echo 'installed ${(packageName in Debian).value}'"

)

The helper methods can be found in MaintainerScriptHelper Scaladocs.

If you use the JavaServerAppPackaging there are predefined postinst and preinst files, which start/stop
the application on install/remove calls. Existing maintainer scripts will be extended not overridden.

Use a Different Castle Directory for your Control Scripts

Your control scripts are in a different castle.. directory? No problem.

debianControlScriptsDirectory <<= (sourceDirectory) apply (_ / "deb" / "control")

3.4 Rpm Plugin

RedHat rpm files support a number of very advanced features. To take full advantage of this environment, it’s best to
understand how the rpm package system works. How to create an RPM package on the fedora project wiki is a good
tutorial, but it focuses on building packages from source. The sbt-native-packager assumes that SBT has built your
source and generated binary packages.

Note: The rpm plugin depends on the Linux Plugin.

3.4. Rpm Plugin 25

https://wiki.debian.org/MaintainerScripts
http://www.scala-sbt.org/sbt-native-packager/latest/api/#com.typesafe.sbt.packager.MaintainerScriptHelper\protect \T1\textdollar
http://fedoraproject.org/wiki/How_to_create_an_RPM_package

sbt-native-packager, Release 1.0a1

3.4.1 Requirements

You need the following applications installed

• rpm

• rpm-build

3.4.2 Build

sbt rpm:packageBin

Required Settings

A rpm package needs some mandatory settings to be valid. Make sure you have these settings in your build:

rpmVendor := "typesafe"

1.0 or higher

Enables the rpm plugin

enablePlugins(RpmPlugin)

0.8 or lower

For this versions rpm packaging is automatically activated. See the Getting Started page for information on how to
enable sbt native packager.

3.4.3 Configuration

Settings and Tasks inherited from parent plugins can be scoped with Rpm.

linuxPackageMappings in Rpm := linuxPackageMappings.value

3.4.4 Settings

Informational Settings

packageName in Rpm The name of the package for the rpm. Its value defines the first component
of the rpm file name (packageName-version-rpmRelease.packageArchitecture.
rpm), as well as the Name: tag in the spec file. Its default value is drawn from packageName
in Linux.

version in Rpm The version of the package for rpm. Takes the form x.y.z, and note that there
can be no dashes in this version string. It defines the second component of the rpm file name
(packageName-version-rpmRelease.packageArchitecture.rpm), as well as the
Version: tag in the spec file. Its default value is drawn from the project defined version.

26 Chapter 3. Packaging Formats

sbt-native-packager, Release 1.0a1

rpmRelease The release number is the package’s version. When the sofware is first packaged
at a particular version, the release should be "1". If the software is repackaged at the
same version, the release number should be incremented, and dropped back to "1" when
the software version is new. Its value defines the third component of the rpm file name
(packageName-version-rpmRelease.packageArchitecture.rpm), as well as the
Release: tag in the spec file. Its default value is "1".

packageArchitecture in Rpm The build architecture for the binary rpm. Its value de-
fines the fourth component of the rpm file name (packageName-version-rpmRelease.
packageArchitecture.rpm), as well as the BuildArch: tag in the spec file. Its default
value is "noarch".

packageSummary in Rpm A brief, one-line summary of the package. Note: the summary must not
contain line separators or end in a period. Its value defines the Summary: tag in the spec file, and
its default value is drawn from packageSummary in Linux.

packageDescription in Rpm A longer, multi-line description of the package. Its value
defines the %description block in the spec file, and its default value is drawn from
packageDescription in Linux.

rpmVendor The name of the company/user generating the RPM.

rpmUrl A url associated with the software in the RPM.

rpmLicense The license associated with software in the RPM.

rpmEpoch The epoch is the most significant number used when resolving different versions for the
same RPM. For a given package, packages with the highest epoch will be used, and in the event of
a tie it will fall back to comparing the version and release.

artifactPath in (Rpm, packageBin) The location of the generated RPM.

Dependency Settings

rpmAutoreq Enable or disable the automatic processing of required packages. Takes the form "yes"
or "no", defaults to "yes". Defines the AutoReq: tag in the spec file.

rpmRequirements The RPM packages that are required to be installed for this RPM to work.

rpmAutoprov Enable or disable the automatic processing of provided packages. Takes the form
"yes" or "no", defaults to "yes". Defines the AutoProv: tag in the spec file.

rpmProvides The RPM package names that this RPM provides.

rpmPrerequisites The RPM packages this RPM needs before installation

rpmObsoletes The packages this RPM allows you to remove

rpmConflcits The packages this RPM conflicts with and cannot be installed with.

rpmSetarch[SettingKey[Option[String]]] Run rpmbuild via Linux setarch command.
Use this for cross-platform builds.

Meta Settings

rpmPrefix The path passed set as the base for the revocable package

rpmChangelogFile External file to be imported and used to generate the changelog of the RPM.

3.4. Rpm Plugin 27

sbt-native-packager, Release 1.0a1

Scriptlet Settings

maintainerScripts in Rpm Contains the scriptlets being injected into the specs file. Cur-
rently supports all previous scriptlets: %pretrans, %pre, %verifyscript%, %post,
%posttrans, %preun and %postun

rpmBrpJavaRepackJars appends __os_install_post scriptlet to rpmPre avoiding jar
repackaging

SystemV Start Script Settings

rpmDaemonLogFile File name of the log generated by application daemon.

3.4.5 Tasks

The Rpm plugin support grants the following commands:

rpm:package-bin Generates the .rpm package for this project.

rpm:rpm-lint Generates the .rpm file and runs the rpmlint command to look for issues in the
package. Useful for debugging.

3.4.6 Customize

Rpm Prefix

The rpm prefix allows you to create a relocatable package as defined by http://www.rpm.org/max-rpm/
s1-rpm-reloc-prefix-tag.html. This optional setting with a handful of overrides to scriptlets and templates will al-
low you to create a working java_server archetype that can be relocated in the file system.

Example Settings:

defaultLinuxInstallLocation := "/opt/package_root",
rpmPrefix := Some(defaultLinuxInstallLocation),
linuxPackageSymlinks := Seq.empty,
defaultLinuxLogsLocation := defaultLinuxInstallLocation + "/" + name

rpmChangelogFile

The rpmChangelogFile property allows you to set a source that will be imported and used on the RPM generation.
So if you use rpm commands to see the changelog it brings that information. You have to create the content in the
changelog file using the RPM conventions that are available here http://fedoraproject.org/wiki/Packaging:Guidelines#
Changelogs.

Example Settings:

changelog := "changelog.txt"

rpmChangelogFile := Some(changelog)

28 Chapter 3. Packaging Formats

http://www.rpm.org/max-rpm/s1-rpm-reloc-prefix-tag.html
http://www.rpm.org/max-rpm/s1-rpm-reloc-prefix-tag.html
http://fedoraproject.org/wiki/Packaging:Guidelines#Changelogs
http://fedoraproject.org/wiki/Packaging:Guidelines#Changelogs

sbt-native-packager, Release 1.0a1

* Sun Aug 24 2014 Team <contact@example.com> - 1.1.0
-Allow to login using social networks

* Wed Aug 20 2014 Team <contact@example.com> - 1.0.1
-Vulnerability fix.

* Tue Aug 19 2014 Team <contact@example.com> - 1.0.0
-First version of the system

Scriptlet Changes

Changing scriptlets can be done in two ways:

1. Override the maintainerScripts in Rpm, or

2. Place new scripts in the src/rpm/scriptlets

To override the ‘‘maintainerScripts in Rpm‘‘ you can override the command string explicitly, create a command
string using appends and/or replacements, or even get a command string from a file source.

For example:

// overriding
import RpmConstants._
maintainerScripts in Rpm := Map(
Pre -> Seq("""echo "pre-install""""),
Post -> Seq("""echo "post-install""""),
Pretrans -> Seq("""echo "pretrans""""),
Posttrans -> Seq("""echo "posttrans""""),
Preun -> Seq("""echo "pre-uninstall""""),
Postun -> Seq("""echo "post-uninstall"""")

)

// appending with strings and replacements
import RpmConstants._
maintainerScripts in Rpm := maintainerScriptsAppend((maintainerScripts in Rpm).value)(

Pretrans -> "echo 'hello, world'",
Post -> s"echo 'installing ${(packageName in Rpm).value}'"

)

// appending from a different file
import RpmConstants._
maintainerScripts in Rpm := maintainerScriptsAppendFromFile((maintainerScripts in
→˓Rpm).value)(

Pretrans -> (sourceDirectory.value / "rpm" / "pretrans"),
Post -> (sourceDirectory.value / "rpm" / "posttrans")

)

The helper methods can be found in MaintainerScriptHelper Scaladocs.

To place new scripts in the src/rpm/scriptlets folder you simply put the commands into the appropriate scriptlet file.
(The scriptlet file names can be found in the RPM Scaladocs.)

src/rpm/scriptlets/preinst

...
echo "PACKAGE_PREFIX=${RPM_INSTALL_PREFIX}" > /etc/sysconfig/${{app_name}}
...

src/rpm/scriptlets/preun

3.4. Rpm Plugin 29

http://www.scala-sbt.org/sbt-native-packager/latest/api/#com.typesafe.sbt.packager.MaintainerScriptHelper\protect \T1\textdollar
http://www.scala-sbt.org/sbt-native-packager/latest/api/#com.typesafe.sbt.packager.rpm.RpmPlugin\protect \T1\textdollar \protect \T1\textdollar Names\protect \T1\textdollar

sbt-native-packager, Release 1.0a1

...
rm /etc/sysconfig/${{app_name}}
...

Using scriptlet files like this will override all previous contents.

Scriptlet Migration from 1.0.x

Before

rpmPostun := rpmPost.value.map { content =>
s"""|$content

|echo "I append this to the current content
|""".stripMargin

}.orElse {
Option("""echo "There wasn't any previous content"
""".stripMargin)
}

After

// this gives you easy access to the correct keys
import RpmConstants._
// in order to append you have to pass the initial maintainerScripts map
maintainerScripts in Rpm := maintainerScriptsAppend((maintainerScripts in Rpm).value)(

Pretrans -> "echo 'hello, world'",
Post -> s"echo 'installing ${(packageName in Rpm).value}'"

)

Jar Repackaging

RPM repackages jars by default in order to optimize jars. Repacking is turned off by default. In order to enable it, set:

rpmBrpJavaRepackJars := true

Note that this appends content to your Pre definition, so make sure not to override it. For more information on this
topic follow these links:

• issue #195

• pullrequest #199

• OpenSuse issue

Marking config files as noreplace

By default, rpm replaces config files on disk when the content has changed between two version. Often, this is not
desirable as configurations are often customized and should not change during updates. rpm provides a means to turn
of the default behaviour by marking config files as noreplace in the spec file. In order to enable this for the build,
we provide a helper method that can be used to modify all config file mappings:

linuxPackageMappings in Rpm := configWithNoReplace((linuxPackageMappings in Rpm).
→˓value)

30 Chapter 3. Packaging Formats

https://github.com/sbt/sbt-native-packager/issues/195
https://github.com/sbt/sbt-native-packager/pull/199
https://github.com/sbt/sbt-native-packager/issues/215

sbt-native-packager, Release 1.0a1

This will mark all config files as noreplace and prevent them from being changed during updates. Please note that
the linuxPackageMappings are scoped to the Rpm plugin. This is necessary in order to catch all config files
relevant to the rpm package and mark them correctly.

3.5 Docker Plugin

Docker images describe how to set up a container for running an application, including what files are present, and
what program to run.

https://docs.docker.com/introduction/understanding-docker/ provides an introduction to Docker.

https://docs.docker.com/reference/builder/ describes the Dockerfile: a file which describes how to set
up the image.

sbt-native-packager focuses on creating a Docker image which can “just run” the application built by SBT.

Note: The docker plugin depends on the Universal Plugin.

3.5.1 Requirements

You need the version 1.10 or higher of the docker console client installed. SBT Native Packager doesn’t use the REST
API, but instead uses the CLI directly.

It is currently not possible to provide authentication for Docker repositories from within the build. The docker binary
used by the build should already have been configured with the appropriate authentication details. See https://docs.
docker.com/engine/reference/commandline/login/ how to login to a Docker registry with username and password.

3.5.2 Build

sbt docker:publishLocal

Required Settings

enablePlugins(DockerPlugin)

Spotify java based docker client

You can also use the java-based spotify Docker client. Add this to your build.sbt

enablePlugins(DockerSpotifyClientPlugin)

and this to your plugins.sbt

libraryDependencies += "com.spotify" % "docker-client" % "8.9.0"

The Docker-spotify client is a provided dependency. You have to explicitly add it on your own. It brings a lot of
dependencies that could slow your build times. This is the reason the dependency is marked as provided.

3.5. Docker Plugin 31

https://docs.docker.com/introduction/understanding-docker/
https://docs.docker.com/reference/builder/
https://github.com/sbt/sbt-native-packager/issues/654
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/

sbt-native-packager, Release 1.0a1

3.5.3 Configuration

Settings and Tasks inherited from parent plugins can be scoped with Docker.

mappings in Docker := mappings.value

3.5.4 Settings

Informational Settings

packageName in Docker The name of the package for Docker (if different from general name).
This will only affect the image name.

version in Docker The version of the package for Docker (if different from general version). Of-
ten takes the form x.y.z.

maintainer in Docker The maintainer of the package, recommended by the Dockerfile format.

Environment Settings

dockerBaseImage The image to use as a base for running the application. It should include binaries
on the path for chown, mkdir, have a discoverable java binary, and include the user configured
by daemonUser (daemon, by default).

daemonUser in Docker The user to use when executing the application. Files below the install
path also have their ownership set to this user.

dockerExposedPorts A list of TCP ports to expose from the Docker image.

dockerExposedUdpPorts A list of UDP ports to expose from the Docker image.

dockerExposedVolumes A list of data volumes to make available in the Docker image.

dockerLabels A map of labels that will be applied to the Docker image.

dockerEnvVars A map of environment variables that will be applied to the Docker image.

dockerEntrypoint Overrides the default entrypoint for docker-specific service discovery tasks be-
fore running the application. Defaults to the bash executable script, available at bin/<script
name> in the current WORKDIR of /opt/docker.

dockerPermissionStrategy The strategy that decides how file permissions are set for the work-
ing directory inside the Docker image

• DockerPermissionStrategy.MultiStage (default) uses multi-stage Docker build to
call chmod ahead of time.

• DockerPermissionStrategy.None does not attempt to change the file permissions, and
use the host machine’s file mode bits.

• DockerPermissionStrategy.Run calls RUN in the Dockerfile. This has regression on
the resulting Docker image file size.

• DockerPermissionStrategy.CopyChown calls COPY --chown in the Dockerfile.
Provided as a backward compatibility.

dockerChmodType The file permissions for the files copied into Docker image when MultiStage
or Run strategy is used.

• DockerChmodType.UserGroupReadExecute (default): chmod u=rX,g=rX

32 Chapter 3. Packaging Formats

sbt-native-packager, Release 1.0a1

• DockerChmodType.UserGroupRead: chmod u=r,g=r

• DockerChmodType.UserGroupWriteExecute: chmod u=rwX,g=rwX

• DockerChmodType.SyncGroupToUser: chmod g=u

• DockerChmodType.UserGroupPlusExecute: chmod u+x,g+x (This is for
dockerAdditionalPermissions)

• DockerChmodType.Custom: Custom argument provided by the user.

dockerAdditionalPermissions Additional permissions typically used to give chmod +x rights
for the executable files. By default generated Bash scripts are given DockerChmodType.
UserGroupPlusExecute.

dockerVersion The docker server version. Used to leverage new docker features while maintaining
backwards compatibility.

dockerApiVersion The docker server API version. Used to leverage new docker features while
maintaining backwards compatibility.

dockerGroupLayers The function mapping files into separate layers to increase docker cache hits.
Lower index means the file would be a part of an earlier layer. The main idea behind this is
to COPY dependencies *.jar’s first as they should change rarely. In separate command COPY
the application *.jar’s that should change more often. Defaults to detect whether the file name
starts with ThisBuild / organization. To disable layers map all files to no layer using
dockerGroupLayers in Docker := PartialFunction.empty.

Publishing Settings

dockerRepository The repository to which the image is pushed when the docker:publish task
is run. This should be of the form [repository.host[:repository.port]] (assumes use
of the index.docker.io repository) or [repository.host[:repository.port]][/
username] (discouraged, but available for backwards compatibilty.).

dockerUsername The username or organization to which the image is pushed when the
docker:publish task is run. This should be of the form [username] or [organization].

dockerUpdateLatest The flag to automatic update the latest tag when the docker:publish
task is run. Default value is FALSE. In order to use this setting, the minimum docker console
version required is 1.10. See https://github.com/sbt/sbt-native-packager/issues/871 for a detailed
explanation.

dockerAlias The alias to be used for tagging the resulting image of the Docker build. The type of
the setting key is DockerAlias. Defaults to [dockerRepository/][dockerUsername/
][packageName]:[version].

dockerAliases The list of aliases to be used for tagging the resulting image of the Docker
build. The type of the setting key is Seq[DockerAlias]. Alias values are in format of
[dockerRepository/][dockerUsername/][packageName]:[tag] where tags
are list of including your project version and latest tag(if dockerUpdateLatest is en-
abled). To append additional aliases to this list, you can add them by extending dockerAlias.
dockerAliases ++= Seq(dockerAlias.value.withTag(Option("stable")),
dockerAlias.value.withRegistryHost(Option("registry.internal.
yourdomain.com")))

dockerBuildOptions Overrides the default Docker build options. Defaults to
Seq("--force-rm", "-t", "[dockerAlias]"). This default is expanded if
dockerUpdateLatest is set to true.

3.5. Docker Plugin 33

https://github.com/sbt/sbt-native-packager/issues/871

sbt-native-packager, Release 1.0a1

dockerExecCommand Overrides the default Docker exec command. Defaults to Seq("docker")

dockerBuildCommand Overrides the default Docker build command. The reason for this is that
many systems restrict docker execution to root, and while the accepted guidance is to alias the
docker command alias docker='/usr/bin/docker', neither Java nor Scala support pass-
ing aliases to sub-processes, and most build systems run builds using a non-login, non-interactive
shell, which also have limited support for aliases, which means that the only viable option is
to use sudo docker directly. Defaults to Seq("[dockerExecCommand]", "build",
"[dockerBuildOptions]", ".").

dockerRmiCommand Overrides the default Docker rmi command. This may be used if force
flags or other options need to be passed to the command docker rmi. Defaults to
Seq("[dockerExecCommand]", "rmi") and will be directly appended with the image
name and tag.

dockerAutoremoveMultiStageIntermediateImages If intermediate images should be au-
tomatically removed when MultiStage strategy is used. Intermediate images usually aren’t
needed after packaging is finished and therefore defaults to true. All intermediate images are
labeled snp-multi-stage=intermediate. If set to false and you want to remove all in-
termediate images at a later point, you can therefore do that by filtering for this label: docker
image prune -f --filter label=snp-multi-stage=intermediate

3.5.5 Tasks

The Docker plugin provides the following commands:

docker:stage Generates a directory with the Dockerfile and environment prepared for creating a
Docker image.

docker:publishLocal Builds an image using the local Docker server.

docker:publish Builds an image using the local Docker server, and pushes it to the configured
remote repository.

docker:clean Removes the built image from the local Docker server.

3.5.6 Customize

There are some predefined settings which you can easily customize. These settings are explained in some detail in
the next sections. If you want to describe your Dockerfile completely yourself, you can provide your own docker
commands as described in Custom Dockerfile.

Docker Image Name and Version

packageName in Docker := packageName.value

version in Docker := version.value

Docker Base Image

dockerBaseImage := "openjdk"

34 Chapter 3. Packaging Formats

sbt-native-packager, Release 1.0a1

Docker Repository

dockerRepository := Some("dockeruser")

Docker Image Customization

dockerExposedPorts := Seq(9000, 9443)

dockerExposedVolumes := Seq("/opt/docker/logs")

In order to work properly with USER daemon the exposed volumes are first created (if they do not exist) and then
chowned.

Install Location

The path to which the application is written can be changed with the location setting. The files from mappings in
Docker are extracted underneath this directory.

defaultLinuxInstallLocation in Docker := "/opt/docker"

Daemon User

By default, sbt Native Packager will create a daemon user named demiourgos728 whose UID is set to 1001, and
and emit USER 1001 since running as non-root is considered the best practice.

The following can be used to emit USER daemon instead:

daemonUserUid in Docker := None
daemonUser in Docker := "daemon"

File Permission

By default, the working directory inside the Docker image is given read-only file permissions set using multi-stage
Docker build, which requires Docker 17.5 or later (watch out if you’re using older Minikube).

If you want to make the working directory writable by the running process, here’s the setting:

import com.typesafe.sbt.packager.docker.DockerChmodType

dockerChmodType := DockerChmodType.UserGroupWriteExecute

By default, the shell scripts generated by SBT Native Packager are given chmod +x rights. Here’s the setting to do
so for other files:

import com.typesafe.sbt.packager.docker.DockerChmodType

dockerAdditionalPermissions += (DockerChmodType.UserGroupPlusExecute, "/opt/docker/
→˓bin/hello")

If you don’t want SBT Native Packager to change the file permissions at all here’s a strategy you can choose:

3.5. Docker Plugin 35

sbt-native-packager, Release 1.0a1

import com.typesafe.sbt.packager.docker.DockerPermissionStrategy

dockerPermissionStrategy := DockerPermissionStrategy.None

This will inherit the file mode bits set in your machine. Given that Kubernetes implementations like OpenShift will
use an arbitrary user, remember to set both the user bits and group bits when running chmod yourself.

Custom Dockerfile

All settings before are used to create a single sequence of docker commands. You have the option to write all of them
on your own, filter or change existing commands or simply add some.

First of all you should take a look what you docker commands look like. In your sbt console type

> show dockerCommands
[info] List(Cmd(FROM,openjdk:8), Cmd(LABEL,MAINTAINER=Your Name <y.n@yourcompany.com>
→˓), ...)

Remove Commands

SBT Native Packager adds commands you may not need. For example, the chowning of a exposed volume:

import com.typesafe.sbt.packager.docker._

// we want to filter the chown command for '/data'
dockerExposedVolumes += "/data"

// use filterNot to return all items that do NOT meet the criteria
dockerCommands := dockerCommands.value.filterNot {

// ExecCmd is a case class, and args is a varargs variable, so you need to bind it
→˓with @
case ExecCmd("RUN", args @ _*) => args.contains("chown") && args.contains("/data")

// don't filter the rest; don't filter out anything that doesn't match a pattern
case cmd => false

}

Add Commands

Since dockerCommands is just a Sequence, adding commands is straightforward:

import com.typesafe.sbt.packager.docker._

// use += to add an item to a Sequence
dockerCommands += Cmd("USER", (daemonUser in Docker).value)

// use ++= to merge a sequence with an existing sequence
dockerCommands ++= Seq(

// setting the run script executable
ExecCmd("RUN",
"chmod", "u+x",
s"${(defaultLinuxInstallLocation in Docker).value}/bin/${executableScriptName.

→˓value}"),
(continues on next page)

36 Chapter 3. Packaging Formats

sbt-native-packager, Release 1.0a1

(continued from previous page)

// setting a daemon user
Cmd("USER", "daemon")

)

Write from Scratch

You can simply wipe out all docker commands with

dockerCommands := Seq()

Now let’s start adding some Docker commands.

import com.typesafe.sbt.packager.docker._

dockerCommands := Seq(
Cmd("FROM", "openjdk:8"),
Cmd("LABEL", s"""MAINTAINER="${maintainer.value}""""),
ExecCmd("CMD", "echo", "Hello, World from Docker")

)

Busybox/Ash Support

Busybox is a popular minimal Docker base image that uses ash, a much more limited shell than bash. By default, the
Java archetype (Java Application Archetype) generates two files for shell support: a bash file, and a Windows .bat
file. If you build a Docker image for Busybox using the defaults, the generated bash launch script will likely not work.

To handle this, you can use AshScriptPlugin, an ash-compatible archetype that is derived from the Java Application
Archetype archetype. . Enable this by including:

enablePlugins(AshScriptPlugin)

With this plugin enabled an ash-compatible launch script will be generated in your Docker image.

Just like for Java Application Archetype, you have the option of overriding the default script by supply-
ing your own src/templates/ash-template file. When overriding the file don’t forget to include
${{template_declares}} somewhere to populate $app_classpath $app_mainclass from your sbt
project. You’ll likely need these to launch your program.

3.6 Windows Plugin

Windows packaging is completely tied to the WIX installer toolset. For any non-trivial package, it’s important to
understand how WIX works. http://wix.tramontana.co.hu/ is an excellent tutorial to how to create packages using wix.

However, the native-packager provides a simple layer on top of wix that may be enough for most projects. If it is not
enough, just override wixConfig or wixFiles tasks. Let’s look at the layer above direct xml configuration.

Note: The windows plugin depends on the Universal Plugin.

3.6. Windows Plugin 37

https://en.wikipedia.org/wiki/Almquist_shell
http://wix.tramontana.co.hu/

sbt-native-packager, Release 1.0a1

3.6.1 Requirements

You need the following applications installed

• WIX Toolset

3.6.2 Build

sbt windows:packageBin

Required Settings

A windows package needs some mandatory settings to be valid. Make sure you have these settings in your build:

// general package information (can be scoped to Windows)
maintainer := "Josh Suereth <joshua.suereth@typesafe.com>"
packageSummary := "test-windows"
packageDescription := """Test Windows MSI."""

// wix build information
wixProductId := "ce07be71-510d-414a-92d4-dff47631848a"
wixProductUpgradeId := "4552fb0e-e257-4dbd-9ecb-dba9dbacf424"

1.0 or higher

Enables the windows plugin

enablePlugins(WindowsPlugin)

0.8 or lower

For these versions windows packaging is automatically activated. See the Getting Started page for information on how
to enable sbt-native-packager.

3.6.3 Configuration

Settings and Tasks inherited from parent plugins can be scoped with Universal.

mappings in Windows := (mappings in Universal).value

Now, let’s look at the full set of windows settings.

3.6.4 Settings

name in Windows The name of the generated msi file.

candleOptions the list of options to pass to the candle.exe command.

lightOptions the list of options to pass to the light.exe command. Most likely setting is:
Seq("-ext", "WixUIExtension", "-cultures:en-us") for UI.

38 Chapter 3. Packaging Formats

http://wixtoolset.org/

sbt-native-packager, Release 1.0a1

wixMajorVersion the major version of the Wix tool-set (e.g. when using Wix 4.0.1, major version
is 4). Default is 3.

wixProductId The GUID to use to identify the windows package/product.

wixProductUpgradeId The GUID to use to identify the windows package/product upgrade identi-
fier (See the wix docs on upgrades).

wixPackageInfo The information used to autoconstruct the <Product><Package/> portion of
the wix xml. Note: unused if ‘‘wixConfig‘‘ is overridden

wixProductLicense An (optional) rtf file to display as the product license during installation.
Defaults to src/windows/License.rtf

wixFeatures A set of windows features that users can install with this package. Note: unused if
‘‘wixConfig‘‘ is overridden

wixProductConfig inline XML to use for wix configuration. This is everything nested inside the
<Product> element.

wixConfig inline XML to use for wix configuration. This is used if the wixFiles task is not speci-
fied.

wixFiles WIX xml source files (wxs) that define the build.

mappings in packageMsi in Windows A list of file->location pairs. This list is used to move
files into a location where WIX can pick up the files and generate a cab or embedded cab for the
msi. The WIX xml should use the relative locations in this mappings when referencing files for the
package.

3.6.5 Tasks

windows:packageBin Creates the msi package.

wixFile Generates the Wix xml file from wixConfig and wixProductConfig setings, unless overriden.

The native-packager plugin provides a few handy utilities for generating Wix XML. These utilities are located in the
com.typesafe.packager.windows.WixHelper object. Among these are the following functions:

cleanStringForId(String): String Takes in a string and returns a wix-friendly identifier.
Note: truncates to 50 characters.

cleanFileName(String): String Takes in a file name and replaces any $ with $$ to make it
past the Wix preprocessor.

generateComponentsAndDirectoryXml(File): (Seq[String], scala.xml.Node)
This method will take a file and generate <Directory>, <Component> and <File> XML
elements for all files/directories contained in the given file. It will return the Id settings for any
generated components. This is a handy way to package a large directory of files for usage in the
Features of an MSI.

3.6.6 Customize

Feature configuration

The abstraction over wix allows you to configure “features” that users may optionally install. These feature are higher
level things, like a set of files or menu links. The currently supported components of features are:

1. Files (ComponentFile)

3.6. Windows Plugin 39

http://wixtoolset.org/documentation/manual/v3/howtos/updates/major_upgrade.html

sbt-native-packager, Release 1.0a1

2. Path Configuration (AddDirectoryToPath)

3. Menu Shortcuts (AddShortCuts)

To create a new feature, simple instantiate the WindowsFeature class with the desired feature components that are
included.

Here’s an example feature that installs a binary file (cool.jar) and a script (cool.bat), and adds a directory to the PATH:

wixFeatures += WindowsFeature(
id="BinaryAndPath",
title="My Project's Binaries and updated PATH settings",
desc="Update PATH environment variables (requires restart).",
components = Seq(

ComponentFile("bin/cool.bat"),
ComponentFile("lib/cool.jar"),
AddDirectoryToPath("bin"))

)

All file references should line up exactly with those found in the mappings in Windows configuration. When
generating a MSI, the plugin will first create a directory using all the mappings in Windows and configure this
for inclusion in a cab file. If you’d like to add files to include, these must first be added to the mappings, and then to
a feature. For example, if we complete the above setting to include file mappings, we’d have the following:

mappings in Windows ++= (packageBin in Compile, sourceDirectory in Windows) map {
→˓(jar, dir) =>
Seq(jar -> "lib/cool.jar", (dir / "cool.bat") -> "bin/cool.bat")

}

wixFeatures += WindowsFeature(
id="BinaryAndPath",
title="My Project's Binaries and updated PATH settings",
desc="Update PATH environment variables (requires restart).",
components = Seq(

ComponentFile("bin/cool.bat"),
ComponentFile("lib/cool.jar"),
AddDirectoryToPath("bin"))

)

Right now this layer is very limited in what it can accomplish, and hasn’t been heavily debugged. If you’re interested
in helping contribute, please do so! However, for most command line tools, it should be sufficient for generating a
basic msi that Windows users can install.

3.7 JDKPackager Plugin

This plugin builds on Oracle’s javapackager tool to generate native application launchers and installers for macOS,
Windows, and Linux. This plugin takes the settings and staged output from Java Application Archetype and passes
them through javapackager to create native formats per Oracle’s provided features.

The actual mechanism used by this plugin is the support provided by the lib/ant-javafx.jar Ant task library,
which provides more capabilities than the javapackager command line version, but the idea is the same.

This plugin’s most relevant addition to the core sbt-native-packager capabilities is the generation of macOS App bun-
dles and associated .dmg and .pkg package formats. With this plugin complete drag-and-drop installable application
bundles are possible, including the embedding of the JRE. It can also generate Windows .exe and .msi installers
provided the requisite tools are available on the Windows build platform (see below). While Linux package formats

40 Chapter 3. Packaging Formats

https://docs.oracle.com/javase/8/docs/technotes/guides/deploy/packager.html#CCHIHIIJ

sbt-native-packager, Release 1.0a1

are also possible via this plugin, it is likely the native sbt-native-packager support for .deb and .rpm formats will
provide more configurability.

Note: The JDKPackagerPlugin depends on the Universal Plugin, Java Application Archetype and Launcher Plugin

3.7.1 Requirements

The ant-javafx.jar library comes with Oracle JDK 8, found in the lib directory along with tools.jar
and friends. If sbt is running under the JVM in Oracle JDK 8, then the plugin should be able to find the path to
ant-javafx.jar. If sbt is running under a different JVM, then the path to the tool will have to be specified via the
jdkPackager:antPackagerTasks setting.

This plugin must be run on the platform of the target installer. The Oracle tooling does not provide a means of creating,
say, Windows installers on MacOS, or MacOS on Linux, etc.

To use create Windows launchers & installers, the either the WIX Toolset (msi) or Inno Setup (exe) is required:

• WIX Toolset

• Inno Setup

For further details on the capabilities of javapackager, see the Windows and Unix references. (Note: only a few of the
possible settings are exposed through this plugin. Please submit a Github issue or pull request if something specific is
desired.)

3.7.2 Enabling

The plugin is enabled via the AutoPlugins facility:

enablePlugins(JDKPackagerPlugin)

3.7.3 Build

To use, first get your application working per Java Application Archetype instructions (including the mainClass
setting). Once that is working, run

sbt jdkPackager:packageBin

By default, the plugin makes the installer type that is native to the current build platform. The installer is put in the
directory target/jdkpackager/bundles. The key jdkPackageType can be used to modify this behavior.
Run help jdkPackageType in sbt for details. The most popular setting is likely to be jdkAppIcon.

3.7.4 Settings

For the latest documentation reference the key descriptions in sbt.

jdkPackagerBasename Filename without the extension for the generated installer package.

jdkPackagerType Value passed as the native attribute to fx:deploy task.

Per javapackager documentation, this may be one of the following:

• all: Runs all of the installers for the platform on which it is running, and creates a disk image for the
application.

3.7. JDKPackager Plugin 41

http://wixtoolset.org/
http://www.jrsoftware.org/isinfo.php
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javapackager.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/javapackager.html
https://github.com/sbt/sbt-native-packager/issues
https://docs.oracle.com/javase/8/docs/technotes/guides/deploy/packager.html#CCHIHIIJ

sbt-native-packager, Release 1.0a1

• installer: Runs all of the installers for the platform on which it is running.

• image: Creates a disk image for the application. On macOS, the image is the .app file. On Linux, the
image is the directory that gets installed.

• dmg: Generates a DMG file for macOS.

• pkg: Generates a .pkg package for macOS.

• mac.appStore: Generates a package for the Mac App Store.

• rpm: Generates an RPM package for Linux.

• deb: Generates a Debian package for Linux.

• exe: Generates a Windows .exe package.

• msi: Generates a Windows Installer package.

Note: Because only a subset of the possible settings are exposed through the plugin, updates are likely required to
fully make use of all formats. dmg is currently the most tested type.

jdkAppIcon Path to platform-specific application icon:

• icns: MacOS

• ico: Windows

• png: Linux

Defaults to a generically bland Java icon. Oracle javafx ant task reference

jdkPackagerToolkit GUI toolkit used in app. Either JavaFXToolkit (default) or SwingToolkit

jdkPackagerJVMArgs Sequence of arguments to pass to the JVM.

Default: Seq("-Xmx768m").

Oracle JVM argument docs

jdkPackagerAppArgs List of command line arguments to pass to the application on launch.

Default: Seq.empty

Oracle arguments docs

jdkPackagerProperties Map of System properties to define in application.

Default: Map.empty

Oracle properties docs

jdkPackagerAssociations Set of application file associations to register for the application.

Example: jdkPackagerAssociations := Seq(FileAssociation("foo", "application/
x-foo", Foo Data File", iconPath))

Default: Seq.empty

Note: Requires JDK >= 8 build 40.

Oracle associations docs

42 Chapter 3. Packaging Formats

http://docs.oracle.com/javase/8/docs/technotes/guides/deploy/javafx_ant_task_reference.html#CACFJBFJ
http://docs.oracle.com/javase/8/docs/technotes/guides/deploy/javafx_ant_task_reference.html#CIAHJIJG
http://docs.oracle.com/javase/8/docs/technotes/guides/deploy/javafx_ant_task_reference.html#CACIJFHB
http://docs.oracle.com/javase/8/docs/technotes/guides/deploy/javafx_ant_task_reference.html#CIAHCIFJ
http://docs.oracle.com/javase/8/docs/technotes/guides/deploy/javafx_ant_task_reference.html#CIAIDHBJ

sbt-native-packager, Release 1.0a1

3.7.5 Example

To take it for a test spin, run sbt jdkPackager:packageBin in the test-project-jdkpackager direc-
tory of the sbt-native-packager source. Then look in the target/jdkpackager/bundles directory for the result
(specific name depends on platform built).

Here’s what the build file looks like:

name := "JDKPackagerPlugin Example"

version := "0.1.0"

organization := "com.foo.bar"

libraryDependencies ++= Seq(
"com.typesafe" % "config" % "1.2.1"

)

mainClass in Compile := Some("ExampleApp")

enablePlugins(JDKPackagerPlugin)

maintainer := "Previously Owned Cats, Inc."

packageSummary := "JDKPackagerPlugin example package thingy"

packageDescription := "A test package using Oracle's JDK bundled javapackager tool."

lazy val iconGlob = sys.props("os.name").toLowerCase match {
case os if os.contains("mac") "*.icns"
case os if os.contains("win") "*.ico"
case _ "*.png"

}

jdkAppIcon := (sourceDirectory.value ** iconGlob).getPaths.headOption.map(file)

jdkPackagerType := "installer"

jdkPackagerJVMArgs := Seq("-Xmx1g")

jdkPackagerProperties := Map("app.name" -> name.value, "app.version" -> version.value)

jdkPackagerAppArgs := Seq(maintainer.value, packageSummary.value, packageDescription.
→˓value)

jdkPackagerAssociations := Seq(
FileAssociation("foobar", "application/foobar", "Foobar file type"),
FileAssociation("barbaz", "application/barbaz", "Barbaz file type", jdkAppIcon.

→˓value)
)

// Example of specifying a fallback location of `ant-javafx.jar` if plugin can't find
→˓it.
(antPackagerTasks in JDKPackager) := (antPackagerTasks in JDKPackager).value orElse {

for {
f <- Some(file("/usr/lib/jvm/java-8-oracle/lib/ant-javafx.jar")) if f.exists()

} yield f
}

3.7. JDKPackager Plugin 43

sbt-native-packager, Release 1.0a1

3.7.6 Debugging

If you are having trouble figuring out how certain features affect the generated package, you can find the Ant-based
build definition file in target/jdkpackager/build.xml. You should be able to run Ant directly in that file
assuming jdkPackager:packageBin has been run at least once.

3.8 GraalVM Native Image Plugin

GraalVM’s native-image compiles Java programs AOT (ahead-of-time) into native binaries.

https://www.graalvm.org/docs/reference-manual/aot-compilation/ documents the AOT compilation of
GraalVM.

The plugin supports both using a local installation of the GraalVM native-image utility, or building inside a
Docker container. If you intend to run the native image on Linux, then building inside a Docker container is recom-
mended since GraalVM native images can only be built for the platform they are built on. By building in a Docker
container, you can build Linux native images not just on Linux but also on Windows and macOS.

3.8.1 Requirements

To build using a local installation of GraalVM, you must have the native-image utility of GraalVM in your PATH.

native-image quick installation

To get started quickly, eg make native-image available in your PATH, you may reuse the script that is used for
sbt-native-packager’s continuous integration. To do so, run the following. It will install GraalVM 1.0.0-rc8.

source <(curl -o - https://raw.githubusercontent.com/sbt/sbt-native-packager/master/.
→˓travis/download-graalvm)

3.8.2 Build

sbt 'show graalvm-native-image:packageBin'

Required Settings

enablePlugins(GraalVMNativeImagePlugin)

3.8.3 Settings

native-image Executable Command (Pay attention if you are using Windows OS)

Putting native-image in PATH does not work for Windows. native-image is a batch file in Windows that
calls another executable to compile the Java classes to a standalone executable. Therefore, the full path to the batch
file e.g. C:\Program Files\Java\graalvm\bin\native-image.cmd must be provided. It is important
to include .cmd.

44 Chapter 3. Packaging Formats

https://www.graalvm.org/docs/reference-manual/aot-compilation/

sbt-native-packager, Release 1.0a1

graalVMNativeImageCommand Set this parameter to point to native-image or
native-image.cmd. For Linux, set this parameter if it is inconvenient to make
native-image available in your PATH.

For example:

graalVMNativeImageCommand := "C:/Program Files/Java/graalvm/bin/native-
→˓image.cmd"

Docker Image Build Settings

By default, a local build will be done, expecting the native-image command to be on your PATH. This can be
customized using the following settings.

graalVMNativeImageGraalVersion Setting this enables generating a Docker container to build
the native image, and then building it in that container. It must correspond to a valid ver-
sion of the Oracle GraalVM Community Edition Docker image. This setting has no effect if
containerBuildImage is explicitly set.

For example:

graalVMNativeImageGraalVersion := Some("19.1.1")

containerBuildImage

Explicitly set a build image to use. The image must execute the Graal native-image com-
mand as its entry point. It can be configured like so:

containerBuildImage := Some("my-docker-username/graalvm-ce-native-
→˓image:19.1.1")

A helper is provided to automatically generate a container build image from a base image that
contains a Graal installation. For example, if you have a GraalVM enterprise edition docker
image, you can turn it into a native image builder like so:

containerBuildImage := GraalVMNativeImagePlugin.
→˓generateContainerBuildImage("example.com/my-username/graalvm-
→˓ee:latest")

The plugin will not build the native image container builder if it finds it in the local
Docker registry already. The native image builders tag name can be seen in the logs if
you wish to delete it to force a rebuild, in the above case, the name will be example.
com-my-username-graalvm-ee:latest.

Publishing Settings

graalVMNativeImageOptions Extra options that will be passed to the native-image com-
mand. By default, this includes the name of the main class.

3.8.4 GraalVM Resources

If you are building the image in a docker container, and you have any resources that need to be avail-
able to the native-image command, such as files passed to -H:ResourceConfigurationFiles or
-H:ReflectionConfigurationFiles, you can place these in your projects src/graal directory. Any files

3.8. GraalVM Native Image Plugin 45

https://hub.docker.com/r/oracle/graalvm-ce/

sbt-native-packager, Release 1.0a1

in there will be made available to the native-image docker container under the path /opt/graalvm/stage/
resources.

3.8.5 Tasks

The GraalVM Native Image plugin provides the following commands:

graalvm-native-image:packageBin Generates a native image using GraalVM.

46 Chapter 3. Packaging Formats

CHAPTER 4

Project Archetypes

Archetype plugins provide predefined configurations for your build. Like format plugins, archetype plugins can depend
on other archetype plugins to extend existing functionality.

Project archetypes are default deployment scripts that try to “do the right thing” for a given type of project. Because
not all projects are created equal, there is no single archetype for all native packages, but a set of them to choose from.

4.1 Java Application Archetype

Application packaging focuses on how your application is launched (via a bash or bat script), how dependencies are
managed and how configuration and other auxiliary files are included in the final distributable. The JavaAppPackaging
archetype provides a default application structure and executable scripts to launch your application.

Additionally there is Java Server Application Archetype which provides platform-specific functionality for installing
your application in server environments. You can customize specific debian and rpm packaging for a variety of
platforms and init service loaders including Upstart, System V and SystemD.

4.1.1 Features

The JavaAppPackaging archetype contains the following features.

• Default application mappings (no fat jar)

• Executable bash/bat script

4.1.2 Usage

Enable the JavaAppPackaging plugin in your build.sbt with

enablePlugins(JavaAppPackaging)

47

sbt-native-packager, Release 1.0a1

This archetype will use the mainClass setting of sbt (automatically discovers your main class) to generate bat
and bin scripts for your project. In case you have multiple main classes you can point to a specific class with the
following setting:

mainClass in Compile := Some("foo.bar.Main")

In order to generate launch scripts only for specified mainClass, you will need to discard automatically found main
classes:

discoveredMainClasses in Compile := Seq()

To create a staging version of your package call

sbt stage

The universal layout produced in your target/universal/stage folder looks like the following:

bin/
<app_name> <- BASH script
<app_name>.bat <- cmd.exe script

lib/
<Your project and dependent jar files here.>

You can add additional files to the project by placing things in src/windows, src/universal or src/linux
as needed. To see if your application runs:

cd target/universal/stage
./bin/<app-name>

This plugin also enables all supported packaging formats as well. Currently all formats are supported by the java
app archetype! For example you can build zips, deb or docker by just enabling JavaAppPackaging.

sbt
create a zip file
> universal:packageBin
create a deb file
> debian:packageBin
publish a docker image to your local registry
> docker:publishLocal

4.1.3 Settings & Tasks

This is a non extensive list of important settings and tasks this plugin provides. All settings have sensible defaults.

makeBashScript Creates or discovers the bash script used by this project.

makeBatScript Creates or discovers the bat script used by this project.

bashScriptTemplateLocation The location of the bash script template.

batScriptTemplateLocation The location of the bat script template.

bashScriptConfigLocation The location of the bash script on the target system. Default
${app_home}/../conf/application.ini

batScriptConfigLocation The location of the bat script on the target system. Default
%APP_HOME%\conf\application.ini

bashScriptExtraDefines A list of extra definitions that should be written to the bash file template.

48 Chapter 4. Project Archetypes

sbt-native-packager, Release 1.0a1

batScriptExtraDefines A list of extra definitions that should be written to the bat file template.

4.1.4 Start script options

The start script provides a few standard options you can pass:

-h | -help Prints script usage

-v | -verbose Prints out more information

-no-version-check Don’t run the java version check

-jvm-debug <port> Turn on JVM debugging, open at the given port

-java-home <java home> Override the default JVM home, it accept variable expansions, e.g.
-java-home ${app_home}/../jre

-main Define a custom main class

To configure the JVM these options are available

JAVA_OPTS environment variable, if unset uses “$java_opts”

-Dkey=val pass -Dkey=val directly to the java runtime

-J-X pass option -X directly to the java runtime (-J is stripped). E.g. -J-Xmx1024

In order to pass application arguments you need to separate the jvm arguments from the application arguments with
--. For example

./bin/my-app -Dconfig.resource=prod.conf -- -appParam1 -appParam2

4.1.5 Multiple Applications

If you have multiple main classes then the JavaAppPackaging archetype provides you with two different ways of
generating start scripts.

1. A start script for each entry point. This is the default behaviour, when no mainClass in Compile is set

2. One start script for the defined mainClass in Compile and forwarding scripts for all other main classes.

Note: What does ‘forwarder script’ mean?

Native-packager’s start script provides a -main option to override the main class that should be executed. A forwarder
script only overrides this attribute and forwards all other parameters to the normal start script.

All customization you implemented for the main script will also apply for the forwarder scripts.

Multiple start scripts

No configuration is needed. SBT sets mainClass in Compile automatically to None if multiple main classes
are discovered.

Example:

For two main classes com.example.FooMain and com.example.BarMain sbt stage will generate these
scripts:

4.1. Java Application Archetype 49

sbt-native-packager, Release 1.0a1

bin/
bar-main
bar-main.bat
foo-main
foo-main.bat

Single start script with forwarders

Generates a single start script for the defined main class in mainClass in Compile and forwarding scripts for
all other discoveredMainClasses in Compile. The forwarder scripts call the defined start script and set the
-main parameter to the concrete main class.

The start script name uses the executableScriptName setting for its name. The forwarder scripts use a simplified
version of the class name.

Example:

The build.sbt has an explicit main class set.

name := "my-project"
mainClass in Compile := Some("com.example.FooMain")

For two main classes com.example.FooMain and com.example.BarMain sbt stage will generate these
scripts:

bin/
bar-main
bar-main.bat
my-project
my-project.bat

Now you can package your application as usual, but with multiple start scripts.

A note on script names

When this plugin generates script names from main class names, it tries to generate readable and unique names:

1. An heuristic is used to split the fully qualified class names into words:

pkg1.TestClass
pkg2.AnUIMainClass
pkg2.SomeXMLLoader
pkg3.TestClass

becomes

pkg-1.test-class
pkg-2.an-ui-main-class
pkg-2.some-xml-loader
pkg-3.test-class

2. Resulted lower-cased names are grouped by the simple class name.

• Names from single-element groups are reduced to their lower-cased simple names.

• Names that would otherwise collide by their simple names are used as is (that is, full names) with dots
replaced by underscores

50 Chapter 4. Project Archetypes

sbt-native-packager, Release 1.0a1

So the final names will be:

pkg-1_test-class
an-ui-main-class
some-xml-loader
pkg-3_test-class

Please note that in some corner cases this may result in multiple scripts with the same name in the resulting archive,
but it is not expected to happen in normal circumstances.

4.1.6 Customize

The application structure is customizable via the standard mappings, which is described in the Universal Plugin
Section.

Application and runtime configuration

There are generally two types of configurations:

• Configuring the JVM and the process

• Configuring the application itself

You have two options to define your runtime and application configurations.

Configuration file

The start scripts provided by the BatStartScriptPlugin and BashStartScriptPlugin can both load an
external configuration file during execution. You can define the configuration file location for both with these two
settings.

bashScriptConfigLocation The location of the bash script on the target system.

Default ${app_home}/../conf/application.ini

batScriptConfigLocation The location of the bat script on the target system.

Default %APP_HOME%\conf\application.ini

The configuration path is the path on the target system. This means that native-packager needs to process this path to
create a valid ‘‘universal:mapping‘‘s entry.

• ${app_home}/../ is removed

• %APP_HOME% is removed and \ is being replaced with /

This means you can either

1. Create a configuration path relative to the application directory (recommended)

2. Create an absolute path that has to match your target and build system

Example

// configure two different files for bash and bat
bashScriptConfigLocation := Some("${app_home}/../conf/jvmopts-bash")
batScriptConfigLocation := Some("%APP_HOME%\\conf\\jvmopts-bat")

Now we know how to configure the location of our configuration file. The next step is to learn how to provide content
for the configuration file.

4.1. Java Application Archetype 51

sbt-native-packager, Release 1.0a1

Via build.sbt

You can specify your options via the build.sbt.

javaOptions in Universal ++= Seq(
// -J params will be added as jvm parameters
"-J-Xmx64m",
"-J-Xms64m",

// others will be added as app parameters
"-Dproperty=true",
"-port=8080",

// you can access any build setting/task here
s"-version=${version.value}"

)

For the -X settings you need to add a suffix -J so the start script will recognize these as vm config parameters.

When you use the javaOptions in Universal sbt-native-packager will generate configuration files if you
haven’t set the batScriptConfigLocation and/or bashScriptConfigLocation to None.

Via Application.ini

The second option is to create src/universal/conf/application.ini with the following template

Setting -X directly (-J is stripped)
-J-X
-J-Xmx1024

Add additional jvm parameters
-Dkey=val

Turn on JVM debugging, open at the given port
-jvm-debug <port>

Don't run the java version check
-no-version-check

enabling debug and sending -d as app argument
the '--' prevents app-parameter swallowing when
using a reserved parameter. See #184
-d -- -d

The file will be installed to ${app_home}/conf/application.ini and read from there by the startscript.
You can use # for comments and new lines as you like. This file currently doesn’t has any variable substitution. We
recommend using the build.sbt if you need any information from your build.

The configuration file for bash scripts takes arguments for the BASH file on each line, and allows comments which
start with the # character. Essentially, this provides a set of default arguments when calling the script.

By default, any file in the src/universal directory is packaged. This is a convenient way to include things like
licenses, and readmes.

If you don’t like application.ini as a name, you can change this in the build.sbt. The default configuration
looks like this

52 Chapter 4. Project Archetypes

sbt-native-packager, Release 1.0a1

bashScriptConfigLocation := Some("${app_home}/../conf/application.ini")
batScriptConfigLocation := Some("%APP_HOME%\\conf\\application.ini")

Add code to the start scripts

The second option is to add code to the generated start scripts via these settings.

bashScriptExtraDefines A list of extra definitions that should be written to the bash file template.

batScriptExtraDefines A list of extra definitions that should be written to the bat file template.

BashScript defines

The bash script accepts extra commands via bashScriptExtraDefines. Generally you can add arbitrary bash
commands here, but for configurations you have two methods to add jvm and app parameters.

// add jvm parameter for typesafe config
bashScriptExtraDefines += """addJava "-Dconfig.file=${app_home}/../conf/app.config""""
// add application parameter
bashScriptExtraDefines += """addApp "--port=8080""""

Syntax

${{template_declares}} Will be replaced with a series of declare <var> lines based on the
bashScriptDefines key. These variables are predefined: * app_mainclass - The main
class entry point for the application. * app_classpath - The complete classpath for the applica-
tion (in order).

BatScript defines

The Windows batch script accepts extra commands via batScriptExtraDefines. It offers two methods to add
jvm and app parameters using similar syntax to the BASH script.

// add jvm parameter for typesafe config
batScriptExtraDefines += """call :add_java "-Dconfig.file=%APP_HOME%\conf\app.config""
→˓""
// add application parameter
batScriptExtraDefines += """call :add_app "--port=8080""""

Syntax

@@APP_ENV_NAME@@ will be replaced with the script friendly name of your package.

@@APP_NAME@@ will be replaced with user friendly name of your package.

@APP_DEFINES@@ will be replaced with a set of variable definitions, like APP_MAIN_CLASS,
APP_MAIN_CLASS.

Start script customizations

While the native packager tries to provide robust BASH/BAT scripts for your applications, they may not always be
enough. The native packager provides a mechanism where the template used to create each script can be customized
or directly overridden.

4.1. Java Application Archetype 53

sbt-native-packager, Release 1.0a1

Bash and Bat script extra defines

For the bat and bash script are separated settings available to add arbitrary code to the start script. See BashScript
defines and BatScript defines for details.

The bashScriptExtraDefines sequence allows you to add new lines to the default bash script used to start the
application. This is useful when you need a setting which isn’t mean for the command-line parameter list passed to
the java process. The lines added to bashScriptExtraDefines are placed near the end of the script and have
access to a number of utility bash functions (e.g. addJava, addApp, addResidual, addDebugger). You can
add lines to this script as we did for the Typesafe config file above. For more complex scripts you can also inject a
separate file managed in your source tree or resource directory:

bashScriptExtraDefines ++= IO.readLines(baseDirectory.value / "scripts" / "extra.sh")

This will add the contents of /scripts/extra.sh in the resource directory to the bash script. Note you should
always concatenate lines to bashScriptExtraDefines as other stages in the pipeline may be include lines to the
start-script.

Overriding Templates (Bash/Bat)

Warning: Replacing the default templates should really only be done if:

1. There is a bug in one of the script templates you need to workaround

2. There is a deficiency in the features of one of the templates you need to fix.

In general, the templates are intended to provide enough utility that customization is only necessary for truly
custom scripts.

In order to override full templates, like the default bash script, you can create a file in src/
templates/bash-template. Alternatively, you can use a different file location by setting
bashScriptTemplateLocation. There are

Similarly the windows BAT template can be overridden by placing a new template in src/templates/
bat-template. You can also use a different file location by setting batScriptTemplateLocation.

4.2 Java Server Application Archetype

Hint: Supports only deb and rpm packaging. No support for Windows or macOS

In the Java Application Archetype section we described how to build and customize settings related to an application.
The server archetype adds additional features you may need when running your application as a service on a server.
SBT Native Packager ships with a set of predefined install and uninstall scripts for various platforms and service
managers.

4.2.1 Features

The JavaServerAppPackaging archetype depends on the Java Application Archetype and adds the following features

• daemon user/group support

54 Chapter 4. Project Archetypes

sbt-native-packager, Release 1.0a1

• default mappings for server applications * /var/log/<pkg> is symlinked from <install>/logs * /
var/run/<pkg> owned by daemonUser

• etc-default support

4.2.2 Usage

enablePlugins(JavaServerAppPackaging)

Everything else works the same way as the Java Application Archetype.

Tip: If you want your application to be registered as a service enable a Systemloaders plugin.

4.2.3 Settings & Tasks

This is a non extensive list of important settings and tasks this plugin provides. All settings have sensible defaults.

daemonUser User to start application daemon

daemonUserUid UID of daemonUser

daemonGroup Group to place daemonUser to

daemonGroupGid GID of daemonGroup

daemonShell Shell provided for the daemon user

daemonStdoutLogFile Filename stdout/stderr of application daemon. Now it’s supported only in
SystemV

4.2.4 Default Mappings

The java server archetype creates a default package structure with the following access rights. <package> is a place-
holder for your actual application name. By default this is normalizedName.

Folder User Permissions Purpose
/usr/share/<package> root 755 / (655) static, non-changeable files
/etc/default/<package> root 644 default config file
/etc/<package> root 644 config folder -> link to /usr/share/<package-name>/conf
/var/run/<package> daemon 644 if the application generates a pid on its own
/var/log/<package> daemon 644 log folder -> symlinked from /usr/share/<package>/log

You can read more on best practices on wikipedia filesystem hierarchy, debian policies and in this native packager
discussion.

If you want to change something in this predefined structure read more about it in the linux section.

4.2.5 Customize

4.2. Java Server Application Archetype 55

http://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://www.debian.org/doc/debian-policy/ch-files.html
https://github.com/sbt/sbt-native-packager/pull/174
https://github.com/sbt/sbt-native-packager/pull/174

sbt-native-packager, Release 1.0a1

Application Configuration

After creating a package, the very next thing needed, usually, is the ability for users/ops to customize the application
once it’s deployed. Let’s add some configuration to the newly deployed application.

There are generally two types of configurations:

• Configuring the JVM and the process

• Configuring the Application itself.

The server archetype provides you with a special feature to configure your application with a single file outside of
customizing the bash or bat script for applications. As this file is OS dependent, each OS gets section.

Linux Configuration

There are different ways described in Customizing the Application and can be used the same way.

The server archetype adds an additional way with an etc-default file placed in src/templates, which cur-
rently only works for SystemV and systemd. The file gets sourced before the actual startscript is executed. The file
will be installed to /etc/default/<normalizedName>

Example /etc/default/<normalizedName> for SystemV:

Available replacements
--
${{author}} package author
${{descr}} package description
${{exec}} startup script name
${{chdir}} app directory
${{retries}} retries for startup
${{retryTimeout}} retry timeout
${{app_name}} normalized app name
${{daemon_user}} daemon user

Setting JAVA_OPTS

JAVA_OPTS="-Dpidfile.path=/var/run/${{app_name}}/play.pid $JAVA_OPTS"

For rpm/systemv you need to set the PIDFILE env variable as well
PIDFILE="/var/run/${{app_name}}/play.pid"

export env vars for 3rd party libs

COMPANY_API_KEY=123abc
export COMPANY_API_KEY

Daemon User and Group

Customize the daemon user and group for your application with the following settings.

// a different daemon user
daemonUser in Linux := "my-user"
// if there is an existing one you can specify the uid
daemonUserUid in Linux := Some("123")

(continues on next page)

56 Chapter 4. Project Archetypes

sbt-native-packager, Release 1.0a1

(continued from previous page)

// a different daemon group
daemonGroup in Linux := "my-group"
// if the group already exists you can specify the uid
daemonGroupGid in Linux := Some("1001")

Environment variables

The usual JAVA_OPTS can be used to override settings. This is a nice way to test different jvm settings with just
restarting the jvm.

Windows Configuration

Support planned.

Systemloader Configuration

See the Systemloaders documentation on how to add a systemloader (e.g. SystemV, Systemd or Upstart) to your
package.

Package Lifecycle Configuration

Some scripts are covered in the standard application type. Read more on Java Application Customization. For the
java_server package lifecycle scripts are customized to provide the following additional features

• Chowning directories and files correctly (if necessary)

• Create/Delete users and groups according to your mapping

• Register application at your init system

For this purpose sbt-native-packager ships with some predefined templates. These can be overridden with different
techniques, depending on the packaging system.

Partially Replace Template Functionality

Most sbt-native-packager scripts are broken up into partial templates in the resources directory. You can override these
default template snippets by adding to the linuxScriptReplacements map. As an example you can change the
loader-functions which starts/stop services based on a certain `ServerLoader`:

linuxScriptReplacements += "loader-functions" -> TemplateWriter.
→˓generateScript(getClass.getResource("/custom-loader-functions"), Nil)

The custom-loader-functions file must declare the startService() and stopService() functions
used in various service management scripts.

RPM Scriptlets

RPM puts all scripts into one file. To override or append settings to your scriptlets use maintainerScripts in
Rpm or these ‘‘RpmConstants._‘‘s:

4.2. Java Server Application Archetype 57

https://github.com/sbt/sbt-native-packager/tree/master/src/main/resources/com/typesafe/sbt/packager

sbt-native-packager, Release 1.0a1

Pre %pre scriptlet

Post %post scriptlet

Pretrans %pretrans scriptlet

Posttrans %posttrans scriptlet

Preun “%preun scriptlet”

Postun %postun scriptlet

Verifyscript %verifyscript scriptlet

If you want to have your files separated from the build definition use the default location for rpm scriptlets. To
override default templates in a RPM build put the new scriptlets in the rpmScriptletsDirectory (by default
src/rpm/scriptlets).

RpmConstants.Scriptlets By default to src/rpm/scriptlets. Place your templates here.

Available templates are

post-rpm pre-rpm postun-rpm preun-rpm

The corresponding maintainer file names are:

pretrans post pre postun preun verifyscript posttrans

Override Postinst scriptlet

By default the post-rpm template only starts the service, but doesn’t register it.

service ${{app_name}} start

For CentOS we can do

chkconfig ${{app_name}} defaults
service ${{app_name}} start || echo "${{app_name}} could not be started. Try manually
→˓with service ${{app_name}} start"

For RHEL

update-rc.d ${{app_name}} defaults
service ${{app_name}} start || echo "${{app_name}} could not be started. Try manually
→˓with service ${{app_name}} start"

Debian Control Scripts

To override default templates in a Debian build put the new control files in the
debianControlScriptsDirectory (by default src/debian/DEBIAN).

debianControlScriptsDirectory By default to src/debian/DEBIAN. Place your tem-
plates here.

debianMakePreinstScript creates or discovers the preinst script used by this project.

debianMakePrermScript creates or discovers the prerm script used by this project.

debianMakePostinstScript creates or discovers the postinst script used by this project.

debianMakePostrmScript creates or discovers the postrm script used by this project.

58 Chapter 4. Project Archetypes

sbt-native-packager, Release 1.0a1

Available templates are

postinst preinst postun preun

Linux Replacements

This is a list of values you can access in your templates

${{author}}
${{descr}}
${{exec}}
${{chdir}}
${{retries}}
${{retryTimeout}}
${{app_name}}
${{daemon_user}}
${{daemon_group}}

Attention: Every replacement corresponds to a single setting or task. For the linuxScriptReplacements you need
to override the setting/task in the in Linux scope. For example

daemonUser in Linux := "new-user"

overrides the daemon_user in the linuxScriptReplacements.

Example Configurations

A list of very small configuration settings can be found at sbt-native-packager-examples

4.3 Systemloaders

SBT native packager provides support for different systemloaders in order to register your application as a service on
your target system, start it automatically and provide systemloader specific configuration.

Tip: You can use systemloaders with the Java Application Archetype or the Java Server Application Archetype!

4.3.1 Overview

There is a generic SystemloaderPlugin which configures default settings and requires necessary plugins. It gets
triggered automatically, when you enable a specific systemloader plugin. If you want to implement your own loader,
you should require the SystemloaderPlugin.

General Settings

serverLoading Loading system to be used for application start script (SystemV, Upstart, Systemd).
This setting can be used to trigger systemloader specific behaviour in your build.

4.3. Systemloaders 59

https://github.com/muuki88/sbt-native-packager-examples

sbt-native-packager, Release 1.0a1

serviceAutostart Determines if service will be automatically started after installation. The default
value is true.

startRunlevels Sequence of runlevels on which application will start up

stopRunlevels Sequence of runlevels on which application will stop

requiredStartFacilities Names of system services that should be provided at application start

requiredStopFacilities Names of system services that should be provided at application stop

killTimeout Timeout before sigkill on stop (after term)

termTimeout Timeout before sigterm on stop

retries Number of retries to start service”

retryTimeout Timeout between retries in seconds

4.3.2 SystemV

Native packager provides different SysV scripts for rpm (CentOS, RHEL, Fedora) and debian (Debian, Ubuntu)
package based systems. Enable SystemV with:

enablePlugins(SystemVPlugin)

The Java Server Application Archetype provides a daemonStdoutLogFile setting, that you can use to redirect the
systemV output into a file.

4.3.3 Systemd

In order to enable Systemd add this plugin:

enablePlugins(SystemdPlugin)

Settings

systemdSuccessExitStatus Takes a list of exit status definitions that when returned by the main
service process will be considered successful termination, in addition to the normal successful exit
code 0 and the signals SIGHUP, SIGINT, SIGTERM, and SIGPIPE. Exit status definitions can
either be numeric exit codes or termination signal names.

systemdIsServiceFileConfig Should file app_name.service be marked as config. Default is
true. If it is set to true, file will be marked %config in rpm package for example.

4.3.4 Upstart

SystemV alternative developed by Ubuntu. Native packager adds support for rpm as well, but we recommend using
Systemd if possible.

enablePlugins(UpstartPlugin)

As a side note Fedora/RHEL/Centos family of linux specifies Default requiretty in its /etc/sudoers
file. This prevents the default Upstart script from working correctly as it uses sudo to run the application as the
daemonUser . Simply disable requiretty to use Upstart or modify the Upstart template.

60 Chapter 4. Project Archetypes

http://upstart.ubuntu.com/

sbt-native-packager, Release 1.0a1

4.3.5 Customization

Native packager provides general settings to customize the created systemloader scripts.

Start Script Location

In order to change the location of the systemloader script/config file you need to adjust the
defaultLinuxStartScriptLocation like this:

defaultLinuxStartScriptLocation in Debian := "/lib/systemd/system"

You may need to change these paths according to your distribution. References are

• Ubuntu systemd documentation

• Debian systemd documentation

• RHEL systemd documentation

Customize Start Script

Sbt Native Packager leverages templating to customize various start/stop scripts and pre/post install tasks. As an
example, to alter the loader-functions which manage the specific start and stop process commands for System-
Loaders you can to the linuxScriptReplacements map:

import com.typesafe.sbt.packager.archetypes.TemplateWriter

linuxScriptReplacements += {
val functions = sourceDirectory.value / "templates" / "custom-loader-functions"
// Nil == replacements. If you want to replace stuff in your script put them in

→˓this Seq[(String,String)]
"loader-functions" -> TemplateWriter.generateScript(functions.toURL, Nil)

}

which will add the following resource file to use start/stop instead of initctl in the post install script:

startService() {
app_name=$1
start $app_name

}

stopService() {
app_name=$1
stop $app_name

}

The debian and redhat pages have further information on overriding distribution specific actions.

Override Start Script

It’s also possible to override the entire script/configuration for your service manager. Create a file src/templates/
systemloader/$loader/$template and it will be used instead.

Possible values:

• $loader - upstart, systemv or systemd

4.3. Systemloaders 61

https://wiki.ubuntu.com/systemd
https://wiki.debian.org/Teams/pkg-systemd/Packaging
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/chap-Managing_Services_with_systemd.html

sbt-native-packager, Release 1.0a1

• $template -

– systemv - loader-functions, start-debian-template, or start-rpm-template

– systemd - loader-functions or start-template

– upstart - loader-functions or start-template

Syntax

You can use ${{variable_name}} to reference variables when writing your script. The default set of variables
is:

• descr - The description of the server.

• author - The configured author name.

• exec - The script/binary to execute when starting the server

• chdir - The working directory for the server.

• retries - The number of times to retry starting the server.

• retryTimeout - The amount of time to wait before trying to run the server.

• app_name - The name of the application (linux friendly)

• app_main_class - The main class / entry point of the application.

• app_classpath - The (ordered) classpath of the application.

• daemon_user - The user that the server should run as.

• daemon_log_file - Absolute path to daemon log file.

4.4 Configuration Archetypes

This is a small collection of additional archetypes that provide smaller enhancements.

4.4.1 AshScript Plugin

This class is an alternate to JavaAppPackaging designed to support the ash shell. Java Application Archetype generates
bash-specific code that is not compatible with ash, a very stripped-down, lightweight shell used by popular micro base
Docker images like BusyBox. The AshScriptPlugin will generate simple ash-compatible output.

enablePlugins(AshScriptPlugin)

4.4.2 ClasspathJar & LauncherJar Plugin

See the Dealing with long classpaths section for usage of these plugins.

4.5 Jlink Plugin

This plugin builds on Java’s jlink tool to embed a JVM image (a stripped-down JRE) into your package. It produces a
JVM image containing only the modules that are referenced from the dependency classpath.

62 Chapter 4. Project Archetypes

https://docs.oracle.com/en/java/javase/11/tools/jlink.html

sbt-native-packager, Release 1.0a1

Note: Current implementation only detects the platform modules (that is, the ones present in the JDK used to build the
image). Modular JARs and directories are packaged as specified by the UniversalPlugin.

enablePlugins(JlinkPlugin)

The plugin requires Oracle JDK 11 or OpenJDK 11. Although jlink and jdeps are also a part of the older JDK versions,
those lack some of the newer features, which was not addressed in the current plugin version.

This plugin must be run on the platform of the target installer. The tooling does not provide a means of creating, say,
Windows installers on MacOS, or MacOS on Linux, etc.

The plugin analyzes the dependencies between packages using jdeps, and raises an error in case of a missing depen-
dency (e.g. for a provided transitive dependency). The missing dependencies can be suppressed on a case-by-case
basis (e.g. if you are sure the missing dependency is properly handled):

jlinkIgnoreMissingDependency := JlinkIgnore.only(
"foo.bar" -> "bar.baz",
"foo.bar" -> "bar.qux"

)

For large projects with a lot of dependencies this can get unwieldy. You can use a more flexible ignore strategy:

jlinkIgnoreMissingDependency := JlinkIgnore.byPackagePrefix(
"foo.bar" -> "bar"

)

Otherwise you may opt out of the check altogether (which is not recommended):

jlinkIgnoreMissingDependency := JlinkIgnore.everything

4.5.1 Known issues

Adding some library dependencies can lead to errors like this:

java.lang.module.FindException: Module paranamer not found, required by com.fasterxml.
→˓jackson.module.paranamer

This is often caused by depending on automatic modules. In the example above,
com.faterxml.jackson.module.paranamer is an explicit module (as in, it is a JAR with a module descriptor)
that defines a dependency on the paranamer module. However, there is no explicit paranamer module - instead,
Jackson expects us to use the paranamer JAR file as an automatic module. To do this, the JAR has to be on the
module path. At the moment JlinkPlugin does not put it there automatically, so we have to do that ourselves:

jlinkModulePath := {
// Get the full classpath with all the resolved dependencies.
fullClasspath.in(jlinkBuildImage).value
// Find the ones that have `paranamer` as their names.
.filter { item =>

item.get(moduleID.key).exists { modId =>
modId.name == "paranamer"

}
}
// Get raw `File` objects.
.map(_.data)

}

4.5. Jlink Plugin 63

sbt-native-packager, Release 1.0a1

4.5.2 Further reading

For further details on the capabilities of jlink, see the jlink and jdeps references. (Note: only some of the possible
settings are exposed through this plugin. Please submit a Github issue or pull request if something specific is desired.)

4.6 Archetype Cheatsheet

This is a set FAQ composed on a single page.

4.6.1 Path Configurations

This section describes where and how to configure different kind of paths settings like

• what is the installation location of my package

• where is the log directory created

• what is the name of my start script

Quick Reference Table

This table gives you a quick overview of the setting and the scope you should use. Paths which do not begin with a
/ are relative to the universal directory. The scopes are ordered from general to specific, so a more specific one will
override the generic one. Only the listed scopes for a setting a relevant. Any changes in other scopes will have no
effect!

output path scopes archetype comment
lib all JavaApp
conf all JavaApp
bin/<executableScriptName> Global JavaApp
bin/<executableScriptName>.bat Global JavaApp
bin/<executableScriptName> Global Entrypoint DockerPlugin
<defaultLinuxInstallationLocation>/<packageName>Linux, De-

bian, Rpm
JavaApp

<defaultLinuxLogLocation>/<packageName>Linux JavaServerAp-
plication

logs Linux JavaServerAp-
plication

Symlink

/etc/default/<packageName> Linux JavaServerAp-
plication

/var/run/<packageName> Linux JavaServerAp-
plication

/etc/init.d/<packageName> Linux, De-
bian, Rpm

JavaServerAp-
plication

For SystemV

/etc/init/<packageName> Linux, De-
bian, Rpm

JavaServerAp-
plication

For Upstart

/usr/lib/systemd/system/<packageName>.service Linux, De-
bian, Rpm

JavaServerAp-
plication

For Systemd

<defaultLinuxInstallLocation> Docker Installation path inside
the container

64 Chapter 4. Project Archetypes

https://docs.oracle.com/en/java/javase/11/tools/jlink.html
https://docs.oracle.com/en/java/javase/11/tools/jdeps.html
https://github.com/sbt/sbt-native-packager/issues

sbt-native-packager, Release 1.0a1

Settings

These settings configure the path behaviour

name Use for the normal jar generation process

packageName Defaults to normalizedName. Can be override in different scopes

executableScriptName Defaults to normalizedName. Sets the name of the executable starter
script

defaultLinuxInstallLocation Defaults to /usr/share/. Used to determine the installation
path for for linux packages (rpm, debian)

defaultLinuxLogsLocation Defaults to /var/log/. Used to determine the log path for linux
packages (rpm, debian).

4.6.2 JVM Options

JVM options can be added via different mechanisms. It depends on your use case which is most suitable. The available
options are

• Adding via bashScriptExtraDefines and batScriptExtraDefines

• Providing a application.ini (JavaApp) or etc-default (JavaServer) file

• Set javaOptions in Universal (JavaApp) or javaOptions in Linux (JavaServer, linux only)

Warning: If you want to change the location of your config keep in mind that the path in bashScriptCon-
figLocation should either - be absolute (e.g. /etc/etc-default/my-config<) or - starting with ${app_home}/../ (e.g.
${app_home}/../conf/application.ini)

Extra Defines

With this approach you are altering the bash/bat script that gets executed. Your configuration is literally woven into it,
so it applies to any archetype using this bashscript (app, akka app, server, . . .).

For a bash script this could look like this.

bashScriptExtraDefines += """addJava "-Dconfig.file=${app_home}/../conf/app.config""""

// or more. -X options don't need to be prefixed with -J
bashScriptExtraDefines ++= Seq(

"""addJava "-Xms1024m"""",
"""addJava "-Xmx2048m""""

)

For more information take a look at the according documentation.

File - application.ini or etc-default

Another approach would be to provide a file that is read by the bash script during execution.

4.6. Archetype Cheatsheet 65

sbt-native-packager, Release 1.0a1

Java App

Create a file src/universal/conf/application.ini (gets automatically added to the package mappings)
and add this to your build.sbt inject the config location into the bashscript.

bashScriptConfigLocation := Some("${app_home}/../conf/application.ini")

Java Server

See Server App Config - src/templates/etc-default-{systemv,systemd}

Setting - javaOptions

The last option to set your java options is using javaOptions in Universal (JavaApp and Server). This will
generate files according to your archetype. The following table gives you an overview what you can use and how
things will be behave if you mix different options. Options lower in the table are more specific and will thus override
the any previous settings (if allowed).

javaOptsScopebash-
ScriptCon-
figLocation

Archetypemap-
pings

comment

Nil Uni-
ver-
sal

None JavaApp No jvm options

Nil Uni-
ver-
sal

Some(appIniLocation)JavaApp User provides the application.ini file in src/universal/conf/
application.ini

opts Uni-
ver-
sal

Some(_) JavaAppadded creates application.ini but leaves
bashScriptConfigLocation unchanged

opts Uni-
ver-
sal

None JavaAppadded creates application.ini and sets
bashScriptConfigLocation. If src/universal/
conf/application.ini is present it will be overridden

Nil Linux None JavaServeradded creates etc-default and sets bashScriptConfigLocation
opts Linux None JavaServeradded creates etc-default, appends javaOptions in Linux and

sets bashScriptConfigLocation
opts Linux Some(_) JavaServeradded creates etc-default, appends javaOptions in Linux and

overrides bashScriptConfigLocation

4.6.3 Overriding Templates

You can override the default template used to generate any of the scripts in any archetype. Listed below are the
overridable files and variables that you can use when generating scripts.

Bat Script - src/templates/bat-template

Creating a file here will override the default template used to generate the .bat script for windows distributions.

Syntax

66 Chapter 4. Project Archetypes

sbt-native-packager, Release 1.0a1

@@APP_ENV_NAME@@ - will be replaced with the script friendly name of your package.

@@APP_NAME@@ - will be replaced with user friendly name of your package.

@APP_DEFINES@@ - will be replaced with a set of variable definitions, like APP_MAIN_CLASS,
APP_MAIN_CLASS.

You can define additional variable definitions using batScriptExtraDefines.

Bash Script - src/templates/bash-template

Creating a file here will override the default template used to generate the BASH start script found in bin/
<application> in the universal distribution

Syntax

${{template_declares}} - Will be replaced with a series of declare <var> lines based on the
bashScriptDefines key. You can add more defines to the bashScriptExtraDefines that will be used
in addition to the default set:

• app_mainclass - The main class entry point for the application.

• app_classpath - The complete classpath for the application (in order).

Service Manager Templates

It’s also possible to override the entire script/configuration templates for your service manager. These templates vary
by loader type. Create a file src/templates/systemloader/$loader/$template and it will be used
instead.

Possible values:

• $loader - upstart, systemv or systemd

• $template - * systemv - loader-functions, start-debian-template, or
start-rpm-template * systemd - loader-functions or start-template * upstart -
loader-functions or start-template

Syntax

You can use ${{variable_name}} to reference variables when writing your script. The default set of variables
is:

• author - The name of the author; defined by maintainer in Linux.

• descr - The short description of the service; defined by packageSummary in Linux.

• exec - The script/binary to execute when starting the service; defined by executableScriptName in
Linux.

• chdir - The working directory for the service; defined by defaultLinuxInstallLocation/
(packageName in Linux).

• retries - The number of times to retry starting the server; defined to be the constant 0.

• retryTimeout - The amount of time to wait before trying to run the server; defined to be the constant 60.

• app_name - The name of the application (linux friendly); defined by packageName in Linux.

• version - The software version; defined by version.

• daemon_user - The user that the service should run as; defined by daemonUser in Linux.

4.6. Archetype Cheatsheet 67

sbt-native-packager, Release 1.0a1

• daemon_user_uid - The user ID of the user that the service should run as; defined by daemonUserUid
in Linux.

• daemon_group - The group of the user that the service should run as; defined by daemonGroup in
Linux.

• daemon_group_gid - The group ID of the group of the user that the service should run as; defined by
daemonGroupGid in Linux.

• daemon_shell - The shell of the user that the service should run as; defined by daemonShell in Linux.

• term_timeout - The timeout for the service to respond to a TERM signal; defined by termTimeout in
Linux, defaults to 60.

• kill_timeout - The timeout for the service to respond to a KILL signal; defined by killTimeout in
Linux, defaults to 30.

• start_facilities - Intended for the Required-Start: line in the INIT INFO block. Its value is
automatically generated with respect to the chosen system loader.

• stop_facilities - Intended for the Required-Stop: line in the INIT INFO block. Its value is
automatically generated with respect to the chosen system loader.

• start_runlevels - Intended for the Default-Start: line in the INIT INFO block. Its value is
automatically generated with respect to the chosen system loader.

• stop_runlevels - Intended for the Default-Stop: line in the INIT INFO block. Its value is automat-
ically generated with respect to the chosen system loader.

Server App Config - src/templates/etc-default-{systemv,systemd}

Creating a file here will override the /etc/default/<application> template for the corresponding loader.

The file /etc/default/<application> is used as follows given the loader:

• systemv: sourced as a bourne script.

• systemd: used as an EnvironmentFile directive parameter (see man systemd.exec, section EnvironmentFile for a
description of the expected file format).

• upstart: presently ignored.

If you’re only overriding JAVA_OPTS, your environment file could be compatible with both systemv and systemd
loaders; if such is the case, you can specify a single file at src/templates/etc-default which will serve as an override for
all loaders.

68 Chapter 4. Project Archetypes

CHAPTER 5

Recipes

This section provides recipes for common configurations. If you can’t find what you are looking for, take a look at
sbt-native-packager examples github page.

5.1 Custom Package Formats

This section provides an overview of different packaging flavors.

5.1.1 SBT Assembly

Main Goal

Create a fat-jar with sbt-assembly in order to deliver a single,
self-containing jar as a package instead of the default lib/ structure

First add the sbt-assembly plugin to your plugins.sbt file.

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.11.2")

The next step is to remove all the jar mappings from the normal mappings and only add the assembly jar. In this
example we’ll set the assembly jar name ourself, so we know exactly what the output should look like. Finally we
change the scriptClasspath so it only contains the assembled jar. This is what the final build.sbt should
contain:

import AssemblyKeys._

// the assembly settings
assemblySettings

(continues on next page)

69

https://github.com/muuki88/sbt-native-packager-examples

sbt-native-packager, Release 1.0a1

(continued from previous page)

// we specify the name for our fat jar
jarName in assembly := "assembly-project.jar"

// using the java server for this application. java_application is fine, too
packageArchetype.java_server

// removes all jar mappings in universal and appends the fat jar
mappings in Universal := {

// universalMappings: Seq[(File,String)]
val universalMappings = (mappings in Universal).value
val fatJar = (assembly in Compile).value
// removing means filtering
val filtered = universalMappings filter {

case (file, name) => ! name.endsWith(".jar")
}
// add the fat jar
filtered :+ (fatJar -> ("lib/" + fatJar.getName))

}

// the bash scripts classpath only needs the fat jar
scriptClasspath := Seq((jarName in assembly).value)

5.1.2 Proguard

Main Goal

Create a package that contains a single fat-jar that has been shrunken / optimized / obfuscated with
proguard.

First add the sbt-proguard plugin to the plugins.sbt file:

addSbtPlugin("com.lightbend.sbt" % "sbt-proguard" % "0.3.0")

Then configure the proguard options in build.sbt:

enablePlugins(SbtProguard)

// to configure proguard for scala, see
// http://proguard.sourceforge.net/manual/examples.html#scala
proguardOptions in Proguard ++= Seq(

"-dontoptimize",
"-dontnote",
"-dontwarn",
"-ignorewarnings",
// ...

)

// specify the entry point for a standalone app
proguardOptions in Proguard += ProguardOptions.keepMain("com.example.Main")

proguardVersion in Proguard := "6.0.3"

(continues on next page)

70 Chapter 5. Recipes

http://proguard.sourceforge.net/
https://github.com/sbt/sbt-proguard

sbt-native-packager, Release 1.0a1

(continued from previous page)

// filter out jar files from the list of generated files, while
// keeping non-jar output such as generated launch scripts
mappings in Universal := (mappings in Universal).value.

filter {
case (file, name) => !name.endsWith(".jar")

}

// ... and then append the jar file emitted from the proguard task to
// the file list
mappings in Universal ++= (proguard in Proguard).

value.map(jar => jar -> ("lib/" + jar.getName))

// point the classpath to the output from the proguard task
scriptClasspath := (proguard in Proguard).value.map(jar => jar.getName)

Now when you package your project using a command such as sbt universal:packageZipTarball, it will
include fat jar that has been created by proguard rather than the normal output in /lib.

5.1.3 Multi Module Builds

Main Goal

Aggregate multiple projects into one native package

If you want to aggregate different projects in a multi module build to a single package, you can specify everything in
a single build.sbt

import NativePackagerKeys._

name := "mukis-fullstack"

// used like the groupId in maven
organization in ThisBuild := "de.mukis"

// all sub projects have the same version
version in ThisBuild := "1.0"

scalaVersion in ThisBuild := "2.11.2"

// common dependencies
libraryDependencies in ThisBuild ++= Seq(

"com.typesafe" % "config" % "1.2.0"
)

// this is the root project, aggregating all sub projects
lazy val root = Project(

id = "root",
base = file("."),
// configure your native packaging settings here
settings = packageArchetype.java_server++ Seq(

maintainer := "John Smith <john.smith@example.com>",
packageDescription := "Fullstack Application",

(continues on next page)

5.1. Custom Package Formats 71

sbt-native-packager, Release 1.0a1

(continued from previous page)

packageSummary := "Fullstack Application",
// entrypoint
mainClass in Compile := Some("de.mukis.frontend.ProductionServer")

),
// always run all commands on each sub project
aggregate = Seq(frontend, backend, api)

) dependsOn(frontend, backend, api) // this does the actual aggregation

// --------- Project Frontend ------------------
lazy val frontend = Project(

id = "frontend",
base = file("frontend")

) dependsOn(api)

// --------- Project Backend ----------------
lazy val backend = Project(

id = "backend",
base = file("backend")

) dependsOn(api)

// --------- Project API ------------------
lazy val api = Project(

id = "api",
base = file("api")

)

5.1.4 Custom Packaging Format

Main Goal

Use native packager to define your own custom packaging format
and reuse stuff you already like

The very core principle of native packager are the mappings. They are a sequence of File -> String tuples,
that map a file on your system to a location on your install location.

Defining a custom mapping format is basically transforming these mappings into the format of you choice. To do so,
we recommend the following steps

1. Create a new configuration scope for you packaging type

2. Define a packageBin task in your new scope that transforms the mappings into a package

The following examples demonstrates how to create a simple text format, which lists all your mappings inside a
package format. A minimal build.sbt would look like this

import NativePackagerKeys._

val TxtFormat = config("txtFormat")

val root = project.in(file("."))
// adding your custom configuration scope

(continues on next page)

72 Chapter 5. Recipes

sbt-native-packager, Release 1.0a1

(continued from previous page)

.configs(TxtFormat)

.settings(packageArchetype.java_server:_*)

.settings(
name := "mukis-custom-package",
version := "1.0",
mainClass in Compile := Some("de.mukis.ConfigApp"),
maintainer in Linux := "Nepomuk Seiler <nepomuk.seiler@mukis.de>",
packageSummary in Linux := "Custom application configuration",
packageDescription := "Custom application configuration",
// defining your custom configuration
packageBin in TxtFormat := {

val fileMappings = (mappings in Universal).value
val output = target.value / s"${packageName.value}.txt"
// create the is with the mappings. Note this is not the ISO format -.-
IO.write(output, "# Filemappings\n")
// append all mappings to the list
fileMappings foreach {

case (file, name) => IO.append(output, s"${file.getAbsolutePath}\t
→˓$name${IO.Newline}")

}
output

}
)

To create your new “packageFormat” just run

txtFormat:packageBin

If you want to read more about sbt configurations:

• sbt tasks

• sbt configurations

• custom configuration

5.2 Dealing with long classpaths

By default, when the native packager generates a script for starting your application, it will generate an invocation of
java that passes every library on the classpath to the classpath argument, -cp. If you have a lot of dependencies, this
may result in a very long command being executed, which, aside from being aesthetically unpleasing and difficult to
work with when using tools like ps, causes problems on some platforms, notably Windows, that have limits to how
long commands can be.

There are a few ways you can work around this in the native packager.

5.2.1 Generate a launcher jar

The native packager includes a plugin that allows generating a launcher jar. This launcher jar will contain no classes,
but will have your projects main class and classpath in its manifest. The script that sbt then generates executes this jar
like so:

java -jar myproject-launcher.jar

To enable the launcher jar, enable the LauncherJarPlugin:

5.2. Dealing with long classpaths 73

http://www.scala-sbt.org/0.13/docs/Tasks.html
http://www.scala-sbt.org/0.13.5/docs/Detailed-Topics/Testing.html#additional-test-configurations-with-shared-sources
http://stackoverflow.com/questions/18789477/define-custom-configuration-in-sbt

sbt-native-packager, Release 1.0a1

enablePlugins(LauncherJarPlugin)

5.2.2 Generate a classpath jar

The classpath jar is very similar to the launcher jar, in that it also has the classpath on its manifest, but it does not
include the main class in its manifest, and so executed by the start script by invoking:

java -cp myproject-classpath.jar some.Main

To enable the classpath jar:

enablePlugins(ClasspathJarPlugin)

5.2.3 Configure a wildcard classpath

JDK 6 and above supports configuring the classpath using wildcards. To enable this, simply override the
scriptClasspath task to only contain *, for example:

scriptClasspath := Seq("*")

One downside of this approach is that the classpath ordering will no longer match the classpath ordering that sbt uses.

5.3 Play 2 Packaging

Although Play 2 supports Sbt Native Packager, it requires some additional steps to successfully package and run your
application.

Tip: there are also two sections in the play documentation that describe deploying and configuring:

• play deploying

• play prod configuration

5.3.1 Build Configuration

Depending on whether you want to package your application as a deb-package or as an rpm-package, you have to setup
your build configuration accordingly. Please, refer to Debian Plugin and Rpm Plugin pages for additional information.

Note that Upstart is not supported by all available operation systems and may not always work as expected. You can
always fallback to the SystemV service manager instead. For more information on service managers please refer to
Java Server Application Archetype page.

5.3.2 Application Configuration

In order to run your application in production you need to provide it with at least:

• Location where it can store its pidfile

• Production configuration

74 Chapter 5. Recipes

https://playframework.com/documentation/latest/Deploying
https://playframework.com/documentation/latest/ProductionConfiguration

sbt-native-packager, Release 1.0a1

One way to provide this information is to append the following content in your build definition:

javaOptions in Universal ++= Seq(
// JVM memory tuning
"-J-Xmx1024m",
"-J-Xms512m",

// Since play uses separate pidfile we have to provide it with a proper path
// name of the pid file must be play.pid
s"-Dpidfile.path=/var/run/${packageName.value}/play.pid",

// alternative, you can remove the PID file
// s"-Dpidfile.path=/dev/null",

// Use separate configuration file for production environment
s"-Dconfig.file=/usr/share/${packageName.value}/conf/production.conf",

// Use separate logger configuration file for production environment
s"-Dlogger.file=/usr/share/${packageName.value}/conf/production-logger.xml",

// You may also want to include this setting if you use play evolutions
"-DapplyEvolutions.default=true"

)

This way you should either store your production configuration under ${{path_to_app_name}}/conf/
production.conf or put it under /usr/share/${{app_name}}/conf/production.conf by hand or
using some configuration management system.

Warning: Your pid file must be called play.pid

SystemV

If you use a system using SystemV start script make sure to provide a etc-default in src/templates and set the PIDFILE
environment variable.

Setting JAVA_OPTS

you can use this instead of the application.ini as well
JAVA_OPTS="-Dpidfile.path=/var/run/${{app_name}}/play.pid $JAVA_OPTS"

For rpm/systemv you need to set the PIDFILE env variable as well
PIDFILE="/var/run/${{app_name}}/play.pid"

See customize section for Java Server Application Archetype for more information on application.ini and etc-default
template.

5.4 Deployment

This page shows you how to configure your build to deploy your build universal(zip, tgz, txz), rpm, debian or msi
packages. For information on docker, please take a look at the docker page.

5.4. Deployment 75

sbt-native-packager, Release 1.0a1

Note: The deployment settings only add artifacts to your publish task. Native packager doesn’t provide any function-
ality for publishing to native repositories.

5.4.1 Setup publish Task

You need a working publish task in order to use the following configurations. A good starting point is the sbt
publish documentation. You should have something like this in your build.sbt

publishTo := {
val nexus = "https://oss.sonatype.org/"
if (version.value.trim.endsWith("SNAPSHOT"))
Some("snapshots" at nexus + "content/repositories/snapshots")

else
Some("releases" at nexus + "service/local/staging/deploy/maven2")

}

For an automatised build process are other plugins like the sbt release plugin.

5.4.2 Default Deployment

The easiest way is to add UniversalDeployPlugin to your build.sbt

enablePlugins(JavaServerAppPackaging, UniversalDeployPlugin)

You are now able to publish your packaged application in both tgz and zip formats with:

universal:publish Publish the zip (or tgz/txz depending on the configuration. Default is to
publish zip along with tgz) package

5.4.3 Custom Deployments

When using other package formats we need to explicitly configure the deployment setup to a more specific one.

RPM

Your build.sbt should contain:

enablePlugins(RpmPlugin, RpmDeployPlugin)

This will make possible to push the RPM with:

sbt rpm:publish

Debian

Enabled with:

enable(DebianPlugin, DebianDeployPlugin)

that will make possible to publish a deb package with:

76 Chapter 5. Recipes

http://www.scala-sbt.org/0.13/docs/Publishing.html
http://www.scala-sbt.org/0.13/docs/Publishing.html
https://github.com/sbt/sbt-release

sbt-native-packager, Release 1.0a1

sbt deb:publish

Windows

If using an msi packaging you need to enable:

enable(WindowsPlugin, WindowsDeployPlugin)

Then, pushing the package is

sbt windows:publish

5.4.4 Custom Configurations

You could configure only what you need as well.

Debian

makeDeploymentSettings(Debian, packageBin in Debian, "deb")

//if you want a changes file as well
makeDeploymentSettings(Debian, genChanges in Debian, "changes")

RPM

makeDeploymentSettings(Rpm, packageBin in Rpm, "rpm")

Windows

makeDeploymentSettings(Windows, packageBin in Windows, "msi")

Universal

// zip
makeDeploymentSettings(Universal, packageBin in Universal, "zip")

makeDeploymentSettings(UniversalDocs, packageBin in UniversalDocs, "zip")

// additional tgz
addPackage(Universal, packageZipTarball in Universal, "tgz")

// additional txz
addPackage(UniversalDocs, packageXzTarball in UniversalDocs, "txz")

5.4. Deployment 77

sbt-native-packager, Release 1.0a1

5.5 Scala JS packaging

Warning: This is no official scala js doc, but created from the native-packager community. See issue-699.

5.5.1 Package webjars and scalajs resources

In order to package all assets correctly, add this to your project

(managedClasspath in Runtime) += (packageBin in previewJVM in Assets).value

5.6 Build the same package with different configs

If you want to build your application with different settings, e.g. for test, staging and production, then you have three
ways to do this.

Tip: All examples are shown in a simple build.sbt. We recommend using AutoPlugins to encapsulate certain
aspects of your build.

All examples can also be found in the native-packager examples,

5.6.1 SBT sub modules

The main idea is to create a submodule per configuration. We start with a simple project build.sbt.

name := "my-app"
enablePlugins(JavaAppPackaging)

In the end we want to create three different packages (test, stage, prod) with the respective configurations. We do this
by creating an application module and three packaging submodules.

// the application
lazy val app = project

.in(file("."))

.settings(
name := "my-app",
libraryDependencies += "com.typesafe" % "config" % "1.3.0"

)

Now that our application is defined in a module, we can add the three packaging submodules. We will override the
resourceDirectory setting with our app resource directory to gain easy access to the applications resources.

lazy val testPackage = project
// we put the results in a build folder
.in(file("build/test"))
.enablePlugins(JavaAppPackaging)
.settings(
// override the resource directory
resourceDirectory in Compile := (resourceDirectory in (app, Compile)).value,
mappings in Universal += {

(continues on next page)

78 Chapter 5. Recipes

https://github.com/sbt/sbt-native-packager/issues/699
https://github.com/muuki88/sbt-native-packager-examples

sbt-native-packager, Release 1.0a1

(continued from previous page)

((resourceDirectory in Compile).value / "test.conf") -> "conf/application.conf"
}

)
.dependsOn(app)

// bascially identical despite the configuration differences
lazy val stagePackage = project

.in(file("build/stage"))

.enablePlugins(JavaAppPackaging)

.settings(
resourceDirectory in Compile := (resourceDirectory in (app, Compile)).value,
mappings in Universal += {

((resourceDirectory in Compile).value / "stage.conf") -> "conf/application.conf"
}

)
.dependsOn(app)

lazy val prodPackage = project
.in(file("build/prod"))
.enablePlugins(JavaAppPackaging)
.settings(
resourceDirectory in Compile := (resourceDirectory in (app, Compile)).value,
mappings in Universal += {

((resourceDirectory in Compile).value / "prod.conf") -> "conf/application.conf"
}

)
.dependsOn(app)

Now that you have your build.sbt set up, you can try building packages.

stages a test build in build/test/target/universal/stage
testPackage/stage

creates a zip with the test configuration
sbt testPackage/universal:packageBin

This technique is a bit verbose, but communicates very clear what is being built and why.

5.6.2 SBT parameters and Build Environment

SBT is a java process, which means you can start it with system properties and use these in your build. This pattern
may be useful in other scopes as well. First we define an AutoPlugin that sets a build environment.

This plugin allows you to start sbt for example like

sbt -Denv=prod
[info] Set current project to my-app (in build file: ...)
[info] Running in build environment: Production
> show buildEnv
[info] Production

Now we can use this buildEnv setting to change things. For example the mappings. We recommend doing this in a
plugin as it involes quite some logic. In this case we decide which configuration file to map as application.conf.

5.6. Build the same package with different configs 79

sbt-native-packager, Release 1.0a1

mappings in Universal += {
val confFile = buildEnv.value match {
case BuildEnv.Developement => "dev.conf"
case BuildEnv.Test => "test.conf"
case BuildEnv.Stage => "stage.conf"
case BuildEnv.Production => "prod.conf"

}
((resourceDirectory in Compile).value / confFile) -> "conf/application.conf"

}

Ofcourse you can change all other settings, package names, etc. as well. Building different output packages would
look like this

sbt -Denv=test universal:packageBin
sbt -Denv=stage universal:packageBin
sbt -Denv=prod universal:packageBin

5.6.3 SBT configuration scope (not recommended)

The other option is to generate additional scopes in order to build a package like prod:packageBin. Scopes behave
counter intuitive sometimes, why we don’t recommend this technique.

Error: This example is work in progress and doesn’t work. Unless you are not very familiar with sbt we highly
recommend using another technique.

A simple start may look like this

lazy val Prod = config("prod") extend(Universal) describedAs("scope to build
→˓production packages")
lazy val Stage = config("stage") extend(Universal) describedAs("scope to build
→˓staging packages")

lazy val app = project
.in(file("."))
.enablePlugins(JavaAppPackaging)
.configs(Prod, Stage)
.settings(
name := "my-app",
libraryDependencies += "com.typesafe" % "config" % "1.3.0"

)

You would expect prod:packageBin to work, but extending scopes doesn’t imply inheriting tasks and settings.
This needs to be done manually. Append this to the app project.

// inheriting tasks and settings
.settings(inConfig(Prod)(UniversalPlugin.projectSettings))
.settings(inConfig(Prod)(JavaAppPackaging.projectSettings))
// define custom settings
.settings(inConfig(Prod)(Seq(

// you have to override everything carefully
packageName := "my-prod-app",
executableScriptName := "my-prod-app",
// this is what we acutally want to change

(continues on next page)

80 Chapter 5. Recipes

sbt-native-packager, Release 1.0a1

(continued from previous page)

mappings += ((resourceDirectory in Compile).value / "prod.conf") -> "conf/
→˓application.conf"
)))

Note that you have to know more on native-packager internals than you should, because you override all the necessary
settings with the intended values. Still this doesn’t work as the universal plugin picks up the wrong mappings to build
the package.

5.7 Embedding JVM in Universal

Sbt Native Packager supports embedding the jvm using the JDKPackager Plugin, however, in some cases you may
want instead to embed the JVM/JRE in other formats, e.g. a tarball with one of the java archetypes.

To accomplish this you need to:

• Add the JVM/JRE of your choice to the mappings

• Make the launcher use the embedded jre

5.7.1 Adding the JVM

The JRE is by definition OS dependent, hence you must choose the one appropriate for your case. The example below
assumes a Linux 64 JRE, whose files are at $HOME/.jre/linux64. The files will be copied to a jre directory in
your distribution

import NativePackagerHelper._

...

mappings in Universal ++= {
val jresDir = Path.userHome / ".jre"
val linux64Jre = jresDir.toPath.resolve("linux64")
directory(linux64Jre.toFile).map { j =>
j._1 -> j._2.replace(jreLink, "jre")

}
}

5.7.2 Application Configuration

In order to run your application in production you also need to make the launcher use the jre added above. This can
be done using the -java-home option with a relative path.

javaOptions in Universal ++= Seq(
// Your original options

"-java-home ${app_home}/../jre"
)

5.7. Embedding JVM in Universal 81

sbt-native-packager, Release 1.0a1

5.8 Setting the umask for your process

In Linux, the umask, associated with the user running the process, will determine what permissions files generated by
the process, such as log files, will have.

5.8.1 Within the start script

You can set the umask within the generated start script:

bashScriptExtraDefines += "umask 077"

This line will be added just before the application will be executed by the start script and therefore the application
process will also inhert this umask. For more information take a look at the according documentation.

Hint: When using Docker this is the only reliable way right now to set the umask for the process. Docker will ignore
any umask set in e.g. /etc/login.defs (or other config files) within a docker image.

5.8.2 System V/systemd

When using the Java Server Application Archetype usually the system default umask for daemons is fine and can be
left unchanged, however sometime the need arises to override it.

As an alternative to the start script approach described in the section above, to set a custom umask for your application
that is running either via a System V init script or systemd, the umask can be specified via a custom /etc/default/
appname file.

The contents of this file can be specified by creating a template at src/templates/etc-default and adding a
line such as the following:

umask 077

82 Chapter 5. Recipes

https://github.com/moby/moby/issues/19189
https://stackoverflow.com/a/46900270/810109

	Introduction
	Goals
	Scope
	Core Concepts

	Getting Started
	Setup
	Your first package

	Packaging Formats
	Universal Plugin
	Linux Plugin
	Debian Plugin
	Rpm Plugin
	Docker Plugin
	Windows Plugin
	JDKPackager Plugin
	GraalVM Native Image Plugin

	Project Archetypes
	Java Application Archetype
	Java Server Application Archetype
	Systemloaders
	Configuration Archetypes
	Jlink Plugin
	Archetype Cheatsheet

	Recipes
	Custom Package Formats
	Dealing with long classpaths
	Play 2 Packaging
	Deployment
	Scala JS packaging
	Build the same package with different configs
	Embedding JVM in Universal
	Setting the umask for your process

